
ttfautohint

Werner Lemberg

Version 0.97

Contents

1 Introduction 4
1.1 What exactly are hints? . 4
1.2 What problems can arise with TrueType hinting? . 5
1.3 Why ttfautohint? . 5

2 ttfautohint and ttfautohintGUI 7
2.1 Calling ttfautohint . 8
2.2 Calling ttfautohintGUI . 8
2.3 Options . 8

2.3.1 Hint Set Range Minimum, Hint Set Range Maximum 8
2.3.2 Fallback Script . 9
2.3.3 Hinting Limit . 9
2.3.4 x Height Increase Limit . 9
2.3.5 x Height Snapping Exceptions . 9
2.3.6 Windows Compatibility . 11
2.3.7 Pre-Hinting . 11
2.3.8 Hint Composites . 11
2.3.9 Symbol Font . 12
2.3.10 Dehint . 12
2.3.11 Add ttfautohint Info . 12
2.3.12 Strong Stem Width and Positioning . 12
2.3.13 Font License Restrictions . 14
2.3.14 Miscellaneous . 14

3 Background and Technical Details 15
3.1 Segments and Edges . 15
3.2 Feature Analysis . 16
3.3 Blue Zones . 16
3.4 Grid Fitting . 17
3.5 Hint Sets . 19
3.6 The ‘.ttfautohint’ Glyph . 22
3.7 Scripts . 23
3.8 SFNT Tables . 24
3.9 Problems . 25

4 The ttfautohint API 26
4.1 Preprocessor Macros and Typedefs . 26
4.2 Callback: TA_Progress_Func . 26
4.3 Callback: TA_Info_Func . 27

2

4.4 Function: TTF_autohint . 27
4.4.1 I/O . 27
4.4.2 Messages and Callbacks . 28
4.4.3 General Hinting Options . 28
4.4.4 Hinting Algorithms . 29
4.4.5 Scripts . 30
4.4.6 Miscellaneous . 30
4.4.7 Remarks . 30

5 Compilation and Installation 31
5.1 Unix Platforms . 31
5.2 MS Windows . 31
5.3 Mac OS X . 31

6 Authors 32

3

1 Introduction

ttfautohint is a library written in C that takes a TrueType font as the input, removes its bytecode
instructions (if any), and returns a new font where all glyphs are bytecode hinted using the information
given by FreeType’s autohinting module. The idea is to provide the excellent quality of the autohinter on
platforms that don’t use FreeType.

The library has a single API function, TTF_autohint, which is described below (chapter 4).

Bundled with the library there are two front-end programs, ttfautohint and ttfautohintGUI (chap-
ter 2), being a command line and an application with a Graphics User Interface (GUI), respectively.

1.1 What exactly are hints?

To cite Wikipedia:

Font hinting (also known as instructing) is the use of mathematical instructions to adjust
the display of an outline font so that it lines up with a rasterized grid. At low screen resolutions,
hinting is critical for producing a clear, legible text. It can be accompanied by antialiasing and
(on liquid crystal displays) subpixel rendering for further clarity.

and Apple’s TrueType Reference Manual:

For optimal results, a font instructor should follow these guidelines:

• At small sizes, chance effects should not be allowed to magnify small differences in the
original outline design of a glyph.

• At large sizes, the subtlety of the original design should emerge.

In general, there are three possible ways to hint a glyph.

1. The font contains hints (in the original sense of this word) to guide the rasterizer, telling it which
shapes of the glyphs need special consideration. The hinting logic is partly in the font and partly
in the rasterizer. More sophisticated rasterizers are able to produce better rendering results.

This is how Type 1 and CFF hints work.

2. The font contains exact instructions (also called bytecode) on how to move the points of its outlines,
depending on the resolution of the output device, and which intentionally distort the (outline)
shape to produce a well-rasterized result. The hinting logic is in the font; ideally, all rasterizers
simply process these instructions to get the same result on all platforms.

This is how TrueType hints work.

4

http://en.wikipedia.org/wiki/Font_hinting
https://developer.apple.com/fonts/TTRefMan/RM03/Chap3.html#features

3. The font gets auto-hinted (at run-time). The hinting logic is completely in the rasterizer. No hints
in the font are used or needed; instead, the rasterizer scans and analyzes the glyphs to apply
corrections by itself.

This is how FreeType’s auto-hinter works; see below (chapter 3) for more.

1.2 What problems can arise with TrueType hinting?

While it is relatively easy to specify PostScript hints (either manually or by an auto-hinter that works at
font creation time), creating TrueType hints is far more difficult. There are at least two reasons:

• TrueType instructions form a programming language, operating at a very low level. They are
comparable to assembler code, thus lacking all high-level concepts to make programming more
comfortable.

Here an example how such code looks like:

SVTCA[0]
PUSHB[] /* 3 values pushed */
18 1 0
CALL[]
PUSHB[] /* 2 values pushed */
15 4
MIRP[01001]
PUSHB[] /* 3 values pushed */
7 3 0
CALL[]

Another major obstacle is the fact that font designers usually aren’t programmers.

• It is very time consuming to manually hint glyphs. Given that the number of specialists for
TrueType hinting is very limited, hinting a large set of glyphs for a font or font family can become
very expensive.

1.3 Why ttfautohint?

The ttfautohint library brings the excellent quality of FreeType rendering to platforms that don’t use
FreeType, yet require hinting for text to look good – like Microsoft Windows. Roughly speaking, it
converts the glyph analysis done by FreeType’s auto-hinting module to TrueType bytecode. Internally,
the auto-hinter’s algorithm resembles PostScript hinting methods; it thus combines all three hinting
methods discussed previously (section 1.1).

The simple interface of the front-ends (both on the command line and with the GUI) allows quick hinting
of a whole font with a few mouse clicks or a single command on the prompt. As a result, you get better
rendering results with web browsers, for example.

AcrossWindows rendering environments today, fonts processed with ttfautohint look best with ClearType
enabled. This is the default for Windows 7. Good visual results are also seen in recent MacOS X versions
and GNU/Linux systems that use FreeType for rendering.

5

The goal of the project is to generate a ‘first pass’ of hinting that font developers can refine further for
ultimate quality.

6

2 ttfautohint and ttfautohintGUI

On all supported platforms (GNU/Linux, Windows, and Mac OS X), the GUI looks quite similar; the used
toolkit is Qt, which in turn uses the platform’s native widgets.

Figure 2.1: ttfautohintGUI on GNU/Linux running KDE

Both the GUI and console version share the same features, to be discussed in the next subsection.

Warning: ttfautohint cannot always process a font a second time. If the font contains composite
glyphs, and option -c is used, reprocessing with ttfautohint will fail. For this reason it is strongly

7

http://qt-project.org

recommended to not delete the original, unhinted font so that you can always rerun ttfautohint.

2.1 Calling ttfautohint

ttfautohint [OPTION]... [IN-FILE [OUT-FILE]]

The TTY binary, ttfautohint, works like a Unix filter, this is, it reads data from standard input if no
input file name is given, and it sends its output to standard output if no output file name is specified.

A typical call looks like the following.

ttfautohint -v -f latn foo.ttf foo-autohinted.ttf

For demonstration purposes, here the same using a pipe and redirection. Note that Windows’s default
command line interpreter, cmd.exe, doesn’t support piping with binary files, unfortunately.

cat foo.ttf | ttfautohint -v -f latn > foo-autohinted.ttf

2.2 Calling ttfautohintGUI

ttfautohintGUI [OPTION]...

ttfautohintGUI doesn’t send any output to a console; however, it accepts the same command line
options as ttfautohint, setting default values for the GUI.

2.3 Options

Long options can be given with one or two dashes, and with and without an equal sign between option
and argument. This means that the following forms are acceptable: -foo=bar, --foo=bar, -foo bar, and
--foo bar.

Below, the section title refers to the command’s label in the GUI, then comes the name of the corresponding
long command line option and its short equivalent, followed by a description.

Background and technical details on the meaning of the various options are given afterwards (chapter 3).

2.3.1 Hint Set Range Minimum, Hint Set Range Maximum

See ‘Hint Sets’ (section 3.5) for a definition and explanation.

--hinting-range-min=n, -l n
The minimum PPEM value (in pixels) at which hint sets are created. The default value for n is 8.

--hinting-range-max=n, -r n
The maximum PPEM value (in pixels) at which hint sets are created. The default value for n is 50.

8

2.3.2 Fallback Script

--fallback-script=s, -f s
Set fallback script to tag s, which is a string consisting of four characters like latn or dflt. It gets
used for for all glyphs that can’t be assigned to a script automatically. See below (section 3.7) for
more details.

2.3.3 Hinting Limit

--hinting-limit=n, -G n
The hinting limit is the PPEM value (in pixels) where hinting gets switched off (using the INSTCTRL
bytecode instruction); it has zero impact on the file size. The default value for n is 200, which
means that the font is not hinted for PPEM values larger than 200.

Note that hinting in the range ‘hinting-range-max’ up to ‘hinting-limit’ uses the hinting configura-
tion for ‘hinting-range-max’.

To omit a hinting limit, use --hinting-limit=0 (or check the ‘No Hinting Limit’ box in the
GUI). Since this will cause internal math overflow in the rasterizer for large pixel values (> 1500px
approx.) it is strongly recommended to not use this except for testing purposes.

2.3.4 x Height Increase Limit

--increase-x-height=n, -x n
Normally, ttfautohint rounds the x height to the pixel grid, with a slight preference for rounding
up. If this flag is set, values in the range 6 PPEM to n PPEM are much more often rounded up.
The default value for n is 14. Use this flag to increase the legibility of small sizes if necessary; you
might get weird rendering results otherwise for glyphs like ‘a’ or ‘e’, depending on the font design.

To switch off this feature, use --increase-x-height=0 (or check the ‘No x Height Increase’ box
in the GUI). To switch off rounding the x height to the pixel grid in general, either partially or
completely, see ‘x Height Snapping Exceptions’ (subsection 2.3.5).

The following images again use the font ‘Mertz Bold’.

2.3.5 x Height Snapping Exceptions

--x-height-snapping-exceptions=string, -X string
A list of comma separated PPEM values or value ranges at which no x-height snapping shall be
applied. A value range has the form value1-value2, meaning value1 <= PPEM <= value2. value1
or value2 (or both) can be missing; a missing value is replaced by the beginning or end of the
whole interval of valid PPEM values, respectively (6 to 32767). Whitespace is not significant;
superfluous commas are ignored, and ranges must be specified in increasing order. For example,
the string "7-9, 11, 13-" means the values 7, 8, 9, 11, 13, 14, 15, etc. Consequently, if the
supplied argument is "-", no x-height snapping takes place at all. The default is the empty string
(""), meaning no snapping exceptions.

Normally, x-height snapping means a slight increase in the overall vertical glyph size so that the
height of lowercase glyphs gets aligned to the pixel grid (this is a global feature, affecting all glyphs

9

Figure 2.2: At 17px, without option -x and ‘-w ""’, the hole in glyph ‘e’ looks very grey in the FontForge snapshot,
and the GDI ClearType rendering (which is the default on older Windows versions) fills it completely
with black because it uses B/W rendering along the y axis. FreeType’s ‘light’ autohint mode (which
corresponds to ttfautohint’s ‘smooth’ stem width algorithm) intentionally aligns horizontal lines to
non-integer (but still discrete) values to avoid large glyph shape distortions.

Figure 2.3: The same, this time with option -x 17 (and ‘-w ""’).

10

of a font). However, having larger vertical glyph sizes is not always desired, especially if it is not
possible to adjust the usWinAscent and usWinDescent values from the font’s OS/2 table so that
they are not too tight. See ‘Windows Compatibility’ (subsection 2.3.6) for more details.

2.3.6 Windows Compatibility

--windows-compatibility, -W
This option makes ttfautohint add two artificial blue zones, positioned at the usWinAscent and
usWinDescent values (from the font’s OS/2 table). The idea is to help ttfautohint so that the
hinted glyphs stay within this horizontal stripe since Windows clips everything falling outside.

There is a general problem with tight values for usWinAscent and usWinDescent; a good descrip-
tion is given in the Vertical Metrics How-To. Additionally, there is a special problem with tight
values if used in combination with ttfautohint because the auto-hinter tends to slightly increase
the vertical glyph dimensions at smaller sizes to improve legibility. This enlargement can make the
heights and depths of glyphs exceed the range given by usWinAscent and usWinDescent.

If ttfautohint is part of the font creation tool chain, and the font designer can adjust those two
values, a better solution instead of using option -W is to reserve some vertical space for ‘padding’:
For the auto-hinter, the difference between a top or bottom outline point before and after hinting
is less than 1px, thus a vertical padding of 2px is sufficient. Assuming a minimum hinting size
of 6ppem, adding two pixels gives an increase factor of 8÷6 = 1.33. This is near to the default
baseline-to-baseline distance used by TeX and other sophisticated text processing applications,
namely 1.2×designsize, which gives satisfying results in most cases. It is also near to the factor
1.25 recommended in the abovementioned how-to. For example, if the vertical extension of the
largest glyph is 2000 units (assuming that it approximately represents the designsize), the sum of
usWinAscent and usWinDescent could be 1.25×2000 = 2500.

In case ttfautohint is used as an auto-hinting tool for fonts that can be no longer modified to change
the metrics, option -W in combination with ‘-X "-"’ to suppress any vertical enlargement should
prevent almost all clipping.

2.3.7 Pre-Hinting

--pre-hinting, -p
Pre-hinting means that a font’s original bytecode is applied to all glyphs before it is replaced with
bytecode created by ttfautohint. This makes only sense if your font already has some hints in it
that modify the shape even at EM size (normally 2048px); for example, some CJK fonts need this
because the bytecode is used to scale and shift subglyphs. For most fonts, however, this is not the
case.

2.3.8 Hint Composites

--composites, -c
By default, the components of a composite glyph get hinted separately. If this flag is set, the
composite glyph itself gets hinted (and the hints of the components are ignored). Using this flag
increases the bytecode size a lot, however, it might yield better hinting results.

11

http://typophile.com/node/13081

If this option is used (and a font actually contains composite glyphs), ttfautohint currently cannot
reprocess its own output for technical reasons, see below (section 3.6).

2.3.9 Symbol Font

--symbol, -s
Apply default values for standard (horizontal) stem width and height instead of deriving them from
a script-specific, hard-coded default character (which usually resembles the shape of a lowercase
‘o’). Use this option (usually in combination with option --fallback-script) to hint symbol or
dingbat fonts or math glyphs, for example, that lack a default character, at the expense of possibly
poor hinting results at small sizes.

2.3.10 Dehint

--dehint, -d
Strip off all hints without generating new hints. Consequently, all other hinting options are ignored.
This option is intended for testing purposes.

2.3.11 Add ttfautohint Info

--no-info, -n
Don’t add ttfautohint version and command line information to the version string or strings (with
name ID 5) in the font’s name table. In the GUI it is similar: If you uncheck the ‘Add ttfautohint
info’ box, information is not added to the name table. Except for testing and development purposes
it is strongly recommended to not use this option.

2.3.12 Strong Stem Width and Positioning

--strong-stem-width=string, -w string
ttfautohint offers two different routines to handle (horizontal) stem widths and stem positions:
‘smooth’ and ‘strong’. The former uses discrete values that slightly increase the stem contrast with
almost no distortion of the outlines, while the latter snaps both stem widths and stem positions to
integer pixel values as much as possible, yielding a crisper appearance at the cost of much more
distortion.

These two routines are mapped onto three possible rendering targets:

• grayscale rendering, with or without optimization for subpixel positioning (e.g. Mac OS X)

• ‘GDI ClearType’ rendering: the rasterizer version, as returned by the GETINFO bytecode
instruction, is in the range 36 <= version < 38 and ClearType is enabled (e.g. Windows XP)

• ‘DirectWrite ClearType’ rendering: the rasterizer version, as returned by the GETINFO
bytecode instruction, is >= 38, ClearType is enabled, and subpixel positioning is enabled also
(e.g. Internet Explorer 9 running on Windows 7)

GDI ClearType uses a mode similar to B/W rendering along the vertical axis, while DW ClearType
applies grayscale rendering. Additionally, only DW ClearType provides subpixel positioning along

12

the x axis. For what it’s worth, the rasterizers version 36 and version 38 in Microsoft Windows are
two completely different rendering engines.

The command line option expects string to contain up to three letters with possible values ‘g’
for grayscale, ‘G’ for GDI ClearType, and ‘D’ for DW ClearType. If a letter is found in string, the
strong stem width routine is used for the corresponding rendering target (and smooth stem width
handling otherwise). The default value is ‘G’, which means that strong stem width handling is
activated for GDI ClearType only. To use smooth stem width handling for all three rendering
targets, use the empty string as an argument, usually connoted with ‘""’.

In the GUI, simply set the corresponding check box to select the strong width routine for a given
rendering target. If you unset the check box, the smooth width routine gets used.

The following FontForge snapshot images use the font ‘Mertz Bold’ (still under development) from
Vernon Adams.

Figure 2.4: The left part shows the glyph ‘g’ unhinted at 26px, the right part with hints, using the ‘smooth’ stem
algorithm.

Figure 2.5: The same, but this time using the ‘strong’ algorithm. Note how the stems are aligned to the pixel grid.

13

http://code.newtypography.co.uk/mertz-sans/
http://code.newtypography.co.uk

2.3.13 Font License Restrictions

--ignore-restrictions, -i
By default, fonts that have bit 1 set in the ‘fsType’ field of the OS/2 table are rejected. If you have a
permission of the font’s legal owner to modify the font, specify this command line option.

If this option is not set, ttfautohintGUI shows a dialogue to handle such fonts if necessary.

2.3.14 Miscellaneous

--help, -h
On the console, print a brief documentation on standard output and exit. This doesn’t work with
ttfautohintGUI on MS Windows.

--version, -v
On the console, print version information on standard output and exit. This doesn’t work with
ttfautohintGUI on MS Windows.

--debug
Print a lot of debugging information on standard error while processing a font (you should redirect
stderr to a file). This doesn’t work with ttfautohintGUI on MS Windows.

14

3 Background and Technical Details

Real-Time Grid Fitting of Typographic Outlines is a scholarly paper that describes FreeType’s auto-hinter
in some detail. Regarding the described data structures it is slightly out of date, but the algorithm itself
hasn’t changed.

The next few subsections are mainly based on this article, introducing some important concepts. Note
that ttfautohint only does hinting along the vertical direction (this is, modifying y coordinates).

3.1 Segments and Edges

A glyph consists of one or more contours (this is, closed curves). For example, glyph ‘O’ consists of two
contours, while glyph ‘I’ has only one.

O I
Figure 3.1: The letter ‘O’ has two contours, an inner and an outer one, while letter ‘I’ has only an outer contour.

A segment is a series of consecutive points of a contour (including its Bézier control points) that are
approximately aligned along a coordinate axis.

A

BC

D E

FG

H

Figure 3.2: A serif. Contour and control points are represented by squares and circles, respectively. The bottom
‘line’ DE is approximately aligned along the horizontal axis, thus it forms a segment of 7 points. Together
with the two other horizontal segments, BC and FG, they form two edges (BC+FG, DE).

An edge corresponds to a single coordinate value on the main dimension that collects one or more
segments (allowing for a small threshold). While finding segments is done on the unscaled outline,
finding edges is bound to the device resolution. See below (section 3.5) for an example.

The analysis to find segments and edges is specific to a script.

15

http://www.tug.org/TUGboat/tb24-3/lemberg.pdf

3.2 Feature Analysis

The auto-hinter analyzes a font in two steps. Right now, everything described below happens for the
horizontal axis only, providing vertical hinting.

• Global Analysis

This affects the hinting of all glyphs, trying to give them a uniform appearance.

– Compute standard stem widths and heights of the font. The values are normally taken from a
glyph that resembles letter ‘o’.

– Compute blue zones, see below (section 3.3).

If stem widths and heights of single glyphs differ by a large value, or if ttfautohint fails to find
proper blue zones, hinting becomes quite poor, leading even to severe shape distortions.

script standard character

cyrl ‘о’, U+043E, CYRILLIC SMALL LETTER O
grek ‘ο’, U+03BF, GREEK SMALL LETTER OMICRON
hebr ,’ם‘ U+05DD, HEBREW LETTER FINAL MEM
latn ‘o’, U+006F, LATIN SMALL LETTER O

Table 3.1: script-specific standard characters of the ‘latin’ module

• Glyph Analysis

This is a per-glyph operation.

– Find segments and edges.

– Link edges together to find stems and serifs. The abovementioned paper gives more details
on what exactly constitutes a stem or a serif and how the algorithm works.

3.3 Blue Zones

Outlines of certain characters are used to determine blue zones. This concept is the same as with Type 1
fonts: All glyph points that lie in certain small horizontal zones get aligned vertically.

Here a series of tables that show the blue zone characters of the latin module’s available scripts; the
values are hard-coded in the source code.

ID Blue zone Characters

1 top of capital letters THEZOCQS
2 bottom of capital letters HEZLOCUS
3 top of ‘small f’ like letters fijkdbh
4 top of small letters xzroesc
5 bottom of small letters xzroesc

16

6 bottom of descenders of small letters pqgjy

Table 3.2: latn blue zones

The ‘round’ characters (e.g. ‘OCQS’) from Zones 1, 2, and 5 are also used to control the overshoot
handling; to improve rendering at small sizes, zone 4 gets adjusted to be on the pixel grid; cf. the
--increase-x-height option (subsection 2.3.4).

ID Blue zone Characters

1 top of capital letters ΓΒΕΖΘΟΩ
2 bottom of capital letters ΒΔΖΞΘΟ
3 top of ‘small beta’ like letters βθδζλξ
4 top of small letters αειοπστω
5 bottom of small letters αειοπστω
6 bottom of descenders of small letters βγημρφχψ

Table 3.3: grek blue zones

ID Blue zone Characters

1 top of capital letters БВЕПЗОСЭ
2 bottom of capital letters БВЕШЗОСЭ
3 top of small letters хпншезос
4 bottom of small letters хпншезос
5 bottom of descenders of small letters руф

Table 3.4: cyrl blue zones

ID Blue zone Characters

1 top of letters סםכךחהדב
2 bottom of letters צסםכטב
3 bottom of descenders of letters ץףןךק

Table 3.5: hebr blue zones

3.4 Grid Fitting

Aligning outlines along the grid lines is called grid fitting. It doesn’t necessarily mean that the outlines
are positioned exactly on the grid, however, especially if you want a smooth appearance at different
sizes. This is the central routine of the auto-hinter; its actions are highly dependent on the used script.
Currently, only support for scripts that work similarly to Latin (e.g. Greek or Cyrillic) is available.

• Align edges linked to blue zones.

17

Figure 3.3: Two blue zones relevant to the glyph ‘a’. Vertical point coordinates of all glyphs within these zones are
aligned, provided the blue zone is active (this is, its vertical size is smaller than 3/4 pixels).

ascender line
cap line

x-height overshoot
mean line

base line

descender line

base line overshoot

x-height

cap height

ascender

descender

Figure 3.4: This image shows the relevant glyph terms for vertical blue zone positions.

18

• Fit edges to the pixel grid.

• Align serif edges.

• Handle remaining ‘strong’ points. Such points are not part of an edge but are still important for
defining the shape. This roughly corresponds to the IP TrueType instruction.

• Everything else (the ‘weak’ points) is handled with an IUP instruction.

The following images illustrate the hinting process, using glyph ‘a’ from the freely available font ‘Ubuntu
Book’. The manual hints were added by Dalton Maag Ltd, the used application to create the hinting
debug snapshots was FontForge.

Figure 3.5: Before hinting.

Figure 3.6: After hinting, using manual hints.

3.5 Hint Sets

In ttfautohint terminology, a hint set is the optimal configuration for a given PPEM (pixel per EM) value.

In the range given by the --hinting-range-min and --hinting-range-max options, ttfautohint
creates hint sets for every PPEM value. For each glyph, ttfautohint automatically determines if a new set

19

http://font.ubuntu.com
http://font.ubuntu.com
http://daltonmaag.com
http://fontforge.sf.net

Figure 3.7: After hinting, using ttfautohint. Note that the hinting process doesn’t change horizontal positions.

should be emitted for a PPEM value if it finds that it differs from a previous one. For some glyphs it is
possible that one set covers, say, the range 8px-1000px, while other glyphs need 10 or more such sets.

In the PPEM range below --hinting-range-min, ttfautohint always uses just one set, in the PPEM
range between --hinting-range-max and --hinting-limit, it also uses just one set.

One of the hinting configuration parameters is the decision which segments form an edge. For example,
let us assume that two segments get aligned on a single horizontal edge at 11px, while two edges are
used at 12px. This change makes ttfautohint emit a new hint set to accomodate this situation.

The next images illustrate this, using a Cyrillic letter (glyph ‘afii10108’) from the ‘Ubuntu book’ font,
processed with ttfautohint.

Figure 3.8: Before hinting, size 11px.

Obviously, the more hint sets get emitted, the larger the bytecode ttfautohint adds to the output font. To
find a good value n for --hinting-range-max, some experimentation is necessary since n depends on
the glyph shapes in the input font. If the value is too low, the hint set created for the PPEM value n (this
hint set gets used for all larger PPEM values) might distort the outlines too much in the PPEM range
given by n and the value set by --hinting-limit (at which hinting gets switched off). If the value is
too high, the font size increases due to more hint sets without any noticeable hinting effects.

20

Figure 3.9: After hinting, size 11px. Segments 43-27-28 and 14-15 are aligned on a single edge, as are segments
26-0-1 and 20-21.

Figure 3.10: Before hinting, size 12px.

21

Figure 3.11: After hinting, size 12px. The segments are not aligned. While segments 43-27-28 and 20-21 now have
almost the same horizontal position, they don’t form an edge because the outlines passing through the
segments point into different directions.

Similar arguments hold for --hinting-range-min except that there is no lower limit at which hinting
is switched off.

An example. Let’s assume that we have a hinting range 10 <= ppem <= 100, and the hinting limit is set to
250. For a given glyph, ttfautohint finds out that four hint sets must be computed to exactly cover this
hinting range: 10-15, 16-40, 41-80, and 81-100. For ppem values below 10ppem, the hint set covering
10-15ppem is used, for ppem values larger than 100 the hint set covering 81-100ppem is used. For ppem
values larger than 250, no hinting gets applied.

3.6 The ‘.ttfautohint’ Glyph

If option --composites (subsection 2.3.8) is used, ttfautohint doesn’t hint subglyphs of composite glyphs
separately. Instead, it hints the whole glyph, this is, composites get recursively expanded internally so
that they form simple glyphs, then hints are applied – this is the normal working mode of FreeType’s
auto-hinter.

One problem, however, must be solved: Hinting for subglyphs (which usually are used as normal glyphs
also) must be deactivated so that nothing but the final bytecode of the composite gets executed.

The trick used by ttfautohint is to prepend a composite element called ‘.ttfautohint’, a dummy glyph with
a single point, and which has a single job: Its bytecode increases a variable (to be more precise, it is a
CVT register called cvtl_is_subglyph in the source code), indicating that we are within a composite
glyph. The final bytecode of the composite glyph eventually decrements this variable again.

As an example, let’s consider composite glyph ‘Agrave’ (‘À’), which has the subglyph ‘A’ as the base and
‘grave’ as its accent. After processing with ttfautohint it consists of three components: ‘.ttfautohint’, ‘A’,
and ‘grave’ (in this order).

Bytecode of Action

.ttfautohint increase cvtl_is_subglyph (now: 1)

22

A do nothing because cvtl_is_subglyph > 0
grave do nothing because cvtl_is_subglyph > 0
Agrave decrease cvtl_is_subglyph (now: 0)

apply hints because cvtl_is_subglyph == 0

Some technical details (which youmight skip): All glyph point indices get adjusted since each ‘.ttfautohint’
subglyph shifts all following indices by one. This must be done for both the bytecode and one subformat
of OpenType’s GPOS anchor tables.

While this approach works fine on all tested platforms, there is one single drawback: Direct rendering of
the ‘.ttfautohint’ subglyph (this is, rendering as a stand-alone glyph) disables proper hinting of all glyphs
in the font! Under normal circumstances this never happens because ‘.ttfautohint’ doesn’t have an entry
in the font’s cmap table. (However, some test and demo programs like FreeType’s ftview application or
other glyph viewers that are able to bypass the cmap table might be affected.)

3.7 Scripts

ttfautohint checks which auto-hinting module should be used to hint a specific glyph. To do so, it checks
a glyph’s Unicode character code whether it belongs to a given script. Currently, only FreeType’s ‘latin’
autohinting module is implemented, but more are expected to come. Note, however, that this module is
capable to hint other scripts too.

Here is the hardcoded list of character ranges that are hinted by this ‘latin’ module. As you can see, this
also covers some non-latin scripts (in the Unicode sense) that have similar typographical properties.

In ttfautohint, scripts are identified by four-character tags. The value dflt indicates ‘no script’, which
gets hinted by ‘dummy’ auto-hinting module.

Character range Description

0x0020 - 0x007F Basic Latin (no control characters)
0x00A0 - 0x00FF Latin-1 Supplement (no control characters)
0x0100 - 0x017F Latin Extended-A
0x0180 - 0x024F Latin Extended-B
0x0250 - 0x02AF IPA Extensions
0x02B0 - 0x02FF Spacing Modifier Letters
0x0300 - 0x036F Combining Diacritical Marks
0x1D00 - 0x1D7F Phonetic Extensions
0x1D80 - 0x1DBF Phonetic Extensions Supplement
0x1DC0 - 0x1DFF Combining Diacritical Marks Supplement
0x1E00 - 0x1EFF Latin Extended Additional
0x2000 - 0x206F General Punctuation
0x2070 - 0x209F Superscripts and Subscripts
0x20A0 - 0x20CF Currency Symbols
0x2150 - 0x218F Number Forms
0x2460 - 0x24FF Enclosed Alphanumerics
0x2C60 - 0x2C7F Latin Extended-C
0x2E00 - 0x2E7F Supplemental Punctuation

23

0xA720 - 0xA7FF Latin Extended-D
0xFB00 - 0xFB06 Alphabetical Presentation Forms (Latin Ligatures)
0x1D400 - 0x1D7FF Mathematical Alphanumeric Symbols
0x1F100 - 0x1F1FF Enclosed Alphanumeric Supplement

Table 3.7: latn character ranges

Character range Description

0x0370 - 0x03FF Greek and Coptic
0x1F00 - 0x1FFF Greek Extended

Table 3.8: grek character ranges

Character range Description

0x0400 - 0x04FF Cyrillic
0x0500 - 0x052F Cyrillic Supplement
0x2DE0 - 0x2DFF Cyrillic Extended-A
0xA640 - 0xA69F Cyrillic Extended-B

Table 3.9: cyrl character ranges

Character range Description

0x0590 - 0x05FF Hebrew
0xFB1D - 0xFB4F Alphabetic Presentation Forms (Hebrew)

Table 3.10: hebr character ranges

If a glyph’s character code is not covered by a script range, it is not hinted (or rather, it gets hinted by
the ‘dummy’ auto-hinting module that essentially does nothing). This can be changed by specifying a
fallback script with option --fallback-script (subsection 2.3.2).

It is planned to extend ttfautohint so that the GSUB OpenType table gets analyzed, mapping character
codes to all glyph indices that can be reached by switching on or off various OpenType features.

3.8 SFNT Tables

ttfautohint touches almost all SFNT tables within a TrueType or OpenType font. Note that only OpenType
fonts with TrueType outlines are supported. OpenType fonts with a CFF table (this is, with PostScript
outlines) won’t work.

• glyf: All hints in the table are replaced with new ones. If option --composites (subsection 2.3.8)
is used, one glyph gets added (namely the ‘.ttfautohint’ glyph) and all composites get an additional
component.

24

• cvt, prep, and fpgm: These tables get replaced with data necessary for the new hinting bytecode.

• gasp: Set up to always use grayscale renderingwith grid-fitting for standard hinting, and symmetric
grid-fitting and symmetric smoothing for horizontal subpixel hinting (ClearType).

• DSIG: If it exists, it gets replaced with a dummy version. ttfautohint can’t digitally sign a font; you
have to do that afterwards.

• name: The ‘version’ entries are modified to add information about the parameters that have been
used for calling ttfautohint. This can be controlled with the --no-info (subsection 2.3.11) option.

• GPOS, hmtx, loca, head, maxp, post: Updated to fit the additional ‘.ttfautohint’ glyph, the addi-
tional subglyphs in composites, and the new hinting bytecode.

• LTSH, hdmx: Since ttfautohint doesn’t do any horizontal hinting, those tables are superfluous and
thus removed.

• VDMX: Removed, since it depends on the original bytecode, which ttfautohint removes. A font
editor might recompute the necessary data later on.

3.9 Problems

Diagonals.

TODO

25

4 The ttfautohint API

This section documents the single function of the ttfautohint library, TTF_autohint, together with its
callback functions, TA_Progress_Func and TA_Info_Func. All information has been directly extracted
from the ttfautohint.h header file.

4.1 Preprocessor Macros and Typedefs

Some default values.

#define TA_HINTING_RANGE_MIN 8
#define TA_HINTING_RANGE_MAX 50
#define TA_HINTING_LIMIT 200
#define TA_INCREASE_X_HEIGHT 14

An error type.

typedef int TA_Error;

4.2 Callback: TA_Progress_Func

A callback function to get progress information. curr_idx gives the currently processed glyph index; if it
is negative, an error has occurred. num_glyphs holds the total number of glyphs in the font (this value
can’t be larger than 65535).

curr_sfnt gives the current subfont within a TrueType Collection (TTC), and num_sfnts the total number
of subfonts.

If the return value is non-zero, TTF_autohint aborts with TA_Err_Canceled. Use this for a ‘Cancel’
button or similar features in interactive use.

progress_data is a void pointer to user-supplied data.

typedef int
(*TA_Progress_Func)(long curr_idx,

long num_glyphs,
long curr_sfnt,
long num_sfnts,
void* progress_data);

26

4.3 Callback: TA_Info_Func

A callback function to manipulate strings in the name table. platform_id, encoding_id, language_id, and
name_id are the identifiers of a name table entry pointed to by str with a length pointed to by str_len (in
bytes; the string has no trailing NULL byte). Please refer to the OpenType specification for a detailed
description of the various parameters, in particular which encoding is used for a given platform and
encoding ID.

The string str is allocated with malloc; the application should reallocate the data if necessary, ensuring
that the string length doesn’t exceed 0xFFFF.

info_data is a void pointer to user-supplied data.

If an error occurs, return a non-zero value and don’t modify str and str_len (such errors are handled as
non-fatal).

typedef int
(*TA_Info_Func)(unsigned short platform_id,

unsigned short encoding_id,
unsigned short language_id,
unsigned short name_id,
unsigned short* str_len,
unsigned char** str,
void* info_data);

4.4 Function: TTF_autohint

Read a TrueType font, remove existing bytecode (in the SFNT tables prep, fpgm, cvt, and glyf), and
write a new TrueType font with new bytecode based on the autohinting of the FreeType library.

It expects a format string options and a variable number of arguments, depending on the fields in options.
The fields are comma separated; whitespace within the format string is not significant, a trailing comma is
ignored. Fields are parsed from left to right; if a field occurs multiple times, the last field’s argument wins.
The same is true for fields that are mutually exclusive. Depending on the field, zero or one argument is
expected.

Note that fields marked as ‘not implemented yet’ are subject to change.

4.4.1 I/O

in-file
A pointer of type FILE* to the data stream of the input font, opened for binary reading. Mutually
exclusive with in-buffer.

in-buffer
A pointer of type const char* to a buffer that contains the input font. Needs in-buffer-len.
Mutually exclusive with in-file.

in-buffer-len
A value of type size_t, giving the length of the input buffer. Needs in-buffer.

27

http://www.microsoft.com/typography/otspec/name.htm

out-file
A pointer of type FILE* to the data stream of the output font, opened for binary writing. Mutually
exclusive with out-buffer.

out-buffer
A pointer of type char** to a buffer that contains the output font. Needs out-buffer-len.
Mutually exclusive with out-file. Deallocate the memory with free.

out-buffer-len
A pointer of type size_t* to a value giving the length of the output buffer. Needs out-buffer.

4.4.2 Messages and Callbacks

progress-callback
A pointer of type TA_Progress_Func (section 4.2), specifying a callback function for progress
reports. This function gets called after a single glyph has been processed. If this field is not set or
set to NULL, no progress callback function is used.

progress-callback-data
A pointer of type void* to user data that is passed to the progress callback function.

error-string
A pointer of type unsigned char** to a string (in UTF-8 encoding) that verbally describes the
error code. You must not change the returned value.

info-callback
A pointer of type TA_Info_Func (section 4.3), specifying a callback function for manipulating the
name table. This function gets called for each name table entry. If not set or set to NULL, the table
data stays unmodified.

info-callback-data
A pointer of type void* to user data that is passed to the info callback function.

debug
If this integer is set to 1, lots of debugging information is print to stderr. The default value is 0.

4.4.3 General Hinting Options

hinting-range-min
An integer (which must be larger than or equal to 2) giving the lowest PPEM value used for
autohinting. If this field is not set, it defaults to TA_HINTING_RANGE_MIN.

hinting-range-max
An integer (which must be larger than or equal to the value of hinting-range-min) giv-
ing the highest PPEM value used for autohinting. If this field is not set, it defaults to
TA_HINTING_RANGE_MAX.

hinting-limit
An integer (which must be larger than or equal to the value of hinting-range-max) that gives
the largest PPEM value at which hinting is applied. For larger values, hinting is switched off. If
this field is not set, it defaults to TA_HINTING_LIMIT. If it is set to 0, no hinting limit is added to
the bytecode.

28

hint-composites
If this integer is set to 1, composite glyphs get separate hints. This implies adding a special glyph
to the font called ‘.ttfautohint’ (section 3.6). Setting it to 0 (which is the default), the hints of the
composite glyphs’ components are used. Adding hints for composite glyphs increases the size of
the resulting bytecode a lot, but it might deliver better hinting results. However, this depends on
the processed font and must be checked by inspection.

pre-hinting
An integer (1 for ‘on’ and 0 for ‘off’, which is the default) to specify whether native TrueType
hinting shall be applied to all glyphs before passing them to the (internal) autohinter. The used
resolution is the em-size in font units; for most fonts this is 2048ppem. Use this if the hints move
or scale subglyphs independently of the output resolution.

4.4.4 Hinting Algorithms

gray-strong-stem-width
An integer (1 for ‘on’ and 0 for ‘off’, which is the default) that specifies whether horizontal stems
should be snapped and positioned to integer pixel values for normal grayscale rendering.

gdi-cleartype-strong-stem-width
An integer (1 for ‘on’, which is the default, and 0 for ‘off’) that specifies whether horizontal stems
should be snapped and positioned to integer pixel values for GDI ClearType rendering, this is, the
rasterizer version (as returned by the GETINFO bytecode instruction) is in the range 36 <= version
< 38 and ClearType is enabled.

dw-cleartype-strong-stem-width
An integer (1 for ‘on’ and 0 for ‘off’, which is the default) that specifies whether horizontal stems
should be snapped and positioned to integer pixel values for DW ClearType rendering, this is,
the rasterizer version (as returned by the GETINFO bytecode instruction) is >= 38, ClearType is
enabled, and subpixel positioning is enabled also.

increase-x-height
An integer. For PPEM values in the range 6 <= PPEM <= increase-x-height, round up the
font’s x height much more often than normally. If it is set to 0, this feature is switched off. If this
field is not set, it defaults to TA_INCREASE_X_HEIGHT. Use this flag to improve the legibility of
small font sizes if necessary.

x-height-snapping-exceptions
A pointer of type const char* to a null-terminated string that gives a list of comma separated
PPEM values or value ranges at which no x-height snapping shall be applied. A value range has
the form value1-value2, meaning value1 <= PPEM <= value2. value1 or value2 (or both) can be
missing; a missing value is replaced by the beginning or end of the whole interval of valid PPEM
values, respectively. Whitespace is not significant; superfluous commas are ignored, and ranges
must be specified in increasing order. For example, the string "3, 5-7, 9-" means the values 3,
5, 6, 7, 9, 10, 11, 12, etc. Consequently, if the supplied argument is "-", no x-height snapping takes
place at all. The default is the empty string (""), meaning no snapping exceptions.

windows-compatibility
If this integer is set to 1, two artificial blue zones are used, positioned at the usWinAscent and
usWinDescent values (from the font’s OS/2 table). The idea is to help ttfautohint so that the

29

hinted glyphs stay within this horizontal stripe since Windows clips everything falling outside.
The default is 0.

4.4.5 Scripts

fallback-script
A string consisting of four lowercase characters that specifies the default script for glyphs which
can’t be mapped to a script automatically. If set to "dflt" (which is the default), no script is used.
Valid values can be found in the header file ttfautohint-scripts.h.

symbol
Set this integer to 1 if you want to process a font that lacks the characters of a supported script, for
example, a symbol font. ttfautohint then uses default values for the standard stem width and height
instead of deriving these values from a script’s key character (for the latin script, it is character ‘o’).
The default value is 0.

4.4.6 Miscellaneous

ignore-restrictions
If the font has set bit 1 in the ‘fsType’ field of the OS/2 table, the ttfautohint library refuses to
process the font since a permission to do that is required from the font’s legal owner. In case you
have such a permission you might set the integer argument to value 1 to make ttfautohint handle
the font. The default value is 0.

dehint
If set to 1, remove all hints from the font. All other hinting options are ignored.

4.4.7 Remarks

• Obviously, it is necessary to have an input and an output data stream. All other options are optional.

• hinting-range-min and hinting-range-max specify the range for which the autohinter gener-
ates optimized hinting code. If a PPEM value is smaller than the value of hinting-range-min, hint-
ing still takes place but the configuration created for hinting-range-min is used. The analogous
action is taken for hinting-range-max, only limited by the value given with hinting-limit.
The font’s gasp table is set up to always use grayscale rendering with grid-fitting for standard
hinting, and symmetric grid-fitting and symmetric smoothing for horizontal subpixel hinting
(ClearType).

• ttfautohint can process its own output a second time only if option hint-composites is not set
(or if the font doesn’t contain composite glyphs at all). This limitation might change in the future.

TA_Error
TTF_autohint(const char* options,

...);

30

5 Compilation and Installation

Please read the files INSTALL and INSTALL.git (part of the source code bundle) for instructions how to
compile the ttfautohint library together with its front-ends.

TODO

5.1 Unix Platforms

TODO

5.2 MS Windows

TODO

5.3 Mac OS X

TODO

31

http://repo.or.cz/w/ttfautohint.git/blob_plain/HEAD:/INSTALL
http://repo.or.cz/w/ttfautohint.git/blob_plain/HEAD:/INSTALL.git

6 Authors

Copyright © 2011-2013 by Werner Lemberg.
Copyright © 2011-2013 by Dave Crossland.

This file is part of the ttfautohint library, and may only be used, modified, and distributed under the terms
given in COPYING. By continuing to use, modify, or distribute this file you indicate that you have read
COPYING and understand and accept it fully.

The file COPYING mentioned in the previous paragraph is distributed with the ttfautohint library.

32

mailto:wl@gnu.org
mailto:dave@understandingfonts.com
http://repo.or.cz/w/ttfautohint.git/blob_plain/HEAD:/COPYING

	Introduction
	What exactly are hints?
	What problems can arise with TrueType hinting?
	Why ttfautohint?

	ttfautohint and ttfautohintGUI
	Calling ttfautohint
	Calling ttfautohintGUI
	Options
	Hint Set Range Minimum, Hint Set Range Maximum
	Fallback Script
	Hinting Limit
	x Height Increase Limit
	x Height Snapping Exceptions
	Windows Compatibility
	Pre-Hinting
	Hint Composites
	Symbol Font
	Dehint
	Add ttfautohint Info
	Strong Stem Width and Positioning
	Font License Restrictions
	Miscellaneous

	Background and Technical Details
	Segments and Edges
	Feature Analysis
	Blue Zones
	Grid Fitting
	Hint Sets
	The `.ttfautohint' Glyph
	Scripts
	SFNT Tables
	Problems

	The ttfautohint API
	Preprocessor Macros and Typedefs
	Callback: TA_Progress_Func
	Callback: TA_Info_Func
	Function: TTF_autohint
	I/O
	Messages and Callbacks
	General Hinting Options
	Hinting Algorithms
	Scripts
	Miscellaneous
	Remarks

	Compilation and Installation
	Unix Platforms
	MS Windows
	Mac OS X

	Authors

