
SyFi User Manual

April 7, 2009

Martin Alnæs and Kent-Andre Mardal

www.fenics.org

Visit http://www.fenics.org/ for the latest version of this manual.
Send comments and suggestions to syfi-dev@fenics.org.

Contents

1 Introduction 9

2 Software 13

2.1 License . 13

2.2 Installation . 14

2.3 Python Support . 15

2.4 Examples and Tests . 15

2.5 GiNaC Tools . 16

2.5.1 The symbol factory . 16

2.5.2 Symbols for spatial variables 17

3 A Finite Element 19

3.1 Basic Concepts . 19

3.2 Polygons . 20

3.2.1 Line . 21

3

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

3.2.2 Triangle . 23

3.2.3 Tetrahedron . 25

3.2.4 Rectangle . 28

3.2.5 Box . 31

3.3 Polynomial Spaces . 33

3.3.1 Bernstein Polynomials 35

3.3.2 Legendre Polynomials 37

3.3.3 Homogeneous Polynomials 39

3.4 A Finite Element . 40

3.5 Degrees of Freedom . 43

4 Some Examples of Finite Elements 53

4.1 Finite Elements in H1 . 53

4.1.1 The Lagrangian Element 53

4.1.2 The Crouizex-Raviart Element 56

4.2 Finite Elements in L2 . 59

4.2.1 The P0 Element . 59

4.2.2 The Discontinuous Lagrangian Element 59

4.3 Finite Elements in H(div) . 63

4.3.1 The Raviart-Thomas Element 63

4.3.2 The Nedelec element of second kind 67

4

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

4.4 Finite Elements in H(div,M) 69

4.5 A Finite Element in Both H(div) and H1 69

4.6 Finite Elements in H(curl) 72

4.6.1 The Nedelec Element 72

5 Mixed Finite Elements 77

5.1 The Taylor–Hood and the P
d
n − Pn−2 Elements 77

5.2 The Mixed Crouizex-Raviart Element 78

5.3 The Mixed Raviart-Thomas Element 79

5.4 The Mixed Arnold-Falk-Winther element 80

6 Computing Element Matrices 81

6.1 A Poisson Problem . 82

6.2 A Poisson Problem on Mixed Form 86

6.3 A Stokes Problem . 87

6.4 A Nonlinear Convection Diffusion Problem 89

6.5 Expression Simplification . 91

7 Python Support 93

8 Code Generation 97

8.1 Basic Tools . 98

8.2 Debugging . 102

5

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

9 Using the SyFi Form Compiler 105

9.1 Quickstart . 106

9.2 Defining Form Arguments . 107

9.2.1 Defining Finite Elements 107

9.2.2 Defining Basisfunctions 108

9.2.3 Defining Coefficients 108

9.3 Defining a Form . 109

9.4 Defining an Integral . 110

9.4.1 Argument expressions 110

9.4.2 Geometric Quantities on Cells 111

9.4.3 Symbolic Language . 111

9.4.4 Examples . 112

9.5 Defining forms with callback functions 114

9.6 Computing the Jacobi matrix form from a nonlinear vector form117

9.7 Compiling a Form (Generating Code) 117

9.8 Options . 118

9.9 Compiling a function . 118

10 Behind the SyFi Form Compiler 121

10.1 Example of generated code . 121

10.2 Data Flow During Code Generation 123

6

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

10.3 Code generation design . 124

10.4 Code Formatting Utilities . 127

7

Chapter 1

Introduction

The reader should be aware that this manual is not quite up to date. Dis-
crepancies between this manual and the current source code is to be expected,
but the general concepts should stay the same.

The finite element package SyFi is a C++ library built on top of the symbolic
math library GiNaC [9]. The name SyFi stands for Symbolic Finite elements.
The package provides polygonal domains, polynomial spaces, and degrees of
freedom as symbolic expressions that are easily manipulated. This makes it
easy to define and use finite elements.

The SyFi Form Compiler (SFC) allows the use of the symbolic expressions
for finite elements from SyFi to compile efficient C++ code.

All the test examples described in this tutorial can be found in the directory
tests. The reader is of course encouraged to run the examples along with
the reading.

Before we start to describe SyFi, we need to briefly review the basic concepts
in GiNaC. GiNaC is an open source C++ library for symbolic mathematics,
which has a strong support for polynomials. The basic structure in GiNaC
is an ex, which may contain either a number, a symbol, a function, a list of
expressions, etc. (see simple.cpp):

9

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

ex pi = 3.14;

ex x = symbol("x");

ex f = cos(x);

ex list = lst(pi,x,f);

Hence, ex is a quite general class, and it is the cornerstone of GiNaC. It
has a lot of functionality, for instance differentiation and integration (see
simple2.cpp),

// initialization (f = x^2 + y^2)

ex f = x*x + y*y;

// differentiation (dfdx = df/dx = 2x)

ex dfdx = f.diff(x,1);

// integration (intf=1/3+y^2, integral of f(x,y) on x=[0,1])

ex intf = integral(x,0,1,f);

GiNaC also has a structure for lists of expressions, lst, with the function
nops() which returns the size of the list, and operator [int i] or the function
op(int i) which returns the i’th element.

We recommend the reader to glance through the GiNaC documentation be-
fore proceeding with this tutorial. GiNaC provides all the basic tools for
manipulation of polynomials, such as differentiation and integration with re-
spect to one variable. Our goal with the SyFi package is to employ GiNaC,
but also to provide higher level constructs such as differentiation with re-
spect to several variables (e.g., ∇), integration of functions over polygonal
domains, and polynomial spaces. All of which are basic ingredients in the
finite element method.

Our motivation behind this project is threefold. First, we wish to make ad-
vanced finite element methods more readily available. We want to do this
by implementing a variety of finite elements and functions for computing el-
ement matrices. Second, in our experience developing and debugging codes

10

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

for finite element methods is hard. Having the basis functions and the weak
form as symbolic expressions, and being able to manipulate them may be
extremely valuable. For instance, being able to differentiate the weak form
to compute the Jacobian in the case of a nonlinear PDE, eliminates a lot
of handwriting and coding. Third, having the symbolic expressions and em-
ploying GiNaCs tools for code generation, we are able to write efficient and
directly compilable C++ code for the computation of element matrices etc.

To try to motivate the reader, we also show an example where we compute
the element matrix for the weak form of the Poisson equation, i.e.,

Aij =

∫

T

∇Ni · ∇Nj dx.

We remark that the following example is an attempt to make an appetizer.
All concepts will be carefully described during the tutorial.

void compute_element_matrix(Polygon& T, int order) {

std::map<std::pair<int,int>, ex> A; // matrix of expression

std::pair<int,int> index; // index in matrix

LagrangeFE fe; // Lagrange element (any order)

fe.set_order(order); // set the order

fe.set_polygon(domain); // set the polygon

fe.compute_basis_functions(); // compute the basis functions

for (int i=0; i< fe.nbf(); i++) {

index.first = i;

for (int j=0; j< fe.nbf(); j++) {

index.second = j;

ex nabla = inner(grad(fe.N(i)), // compute integrands

grad(fe.N(j)));

ex Aij = T.integrate(nabla); // compute weak form

A[index] = Aij; // update element matrix

}

}

}

In the above example, everything is computed symbolically. Even the poly-
gon may be an abstract polygon, e.g., specified as a triangle with vertices x0,
x1, and x2, where the vertices are symbols and not concrete points. Notice
also, that we usually use STL containers to store our datastructure. This
leads to the somewhat unfamiliar notation A[index] instead of A[i,j].

11

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

There are quite a few other projects that are similar in various respects to
SyFi. We will not give a comprehensive description of these projects, only
mention the projects such that the readers can look them up by themselves.
Within the FEniCS [4] project there are two Python projects: FIAT [6] and
FFC [5]. FIAT is a Python module for defining finite elements while FFC
generates C++ code based on a high–level Python description of variational
forms. The DSEL project [3] is a project which employs high–level C++ pro-
gramming techniques such as expression templates and meta-programming
for defining variational forms, performing automatic differentiation, interpo-
lation and more. Sundance [12] is a C++ library with a powerful symbolic
engine which supports automatic generation of discrete system for a given
variational form. Analysa [1], GetDP [8], and FreeFem++ [7] define domain-
specific languages for finite element computations.

Finally, we have to warn the reader: This project is still within its initial
phase.

12

Chapter 2

Software

2.1 License

SyFi employs GiNaC and is therefore limited by GiNaCs license, which is
the GPL-2 licence listed below.

However, SyFi is usually used to generated code. The generated code is free.

This program is free software; you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139, USA.

Notice, however that SyFi is usually used to generate code. This code is free,
but it comes without any warranty for fitness of any purpose.

13

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

In the case where the GNU licence does not fit your need. Contact the
authors at syfi-dev@fenics.org.

2.2 Installation

Dependencies

SyFi is a C++ library and therefore a C++ compiler is needed. At present
the library has only been tested with the GNU C++ compiler. The configure

script is a shell script made by the tools Automake and Autoconf. Hence,
you can run this script with, e.g., the GNU Bourne-again shell. Finally, SyFi
relies on the C++ library GiNaC.

Configuration and Installation

As mention earlier, the configuration, build and installation scripts are all
made by the Autoconf and Automake tools. Hence, to configure, build and
install the package, simply execute the commands,

bash >./configure

bash >make

bash >make install

If this does not work, it is most likely because GiNaC is not properly installed
on your system. Check if you have the script ginac-config in your path.

Reporting Bugs/Submitting Patches

In case, you want to contribute code, please create a patch with diff,

bash >diff -u -N -r SyFi SyFi-mod > SyFi-<name>-<date>.patch

14

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Here <name> should be replaced with your name and <date> should be replaced
with the current date.

The patch should be mailed to the SyFi mailing-list at syfi-dev@fenics.org.

2.3 Python Support

SyFi comes with Python support. The Python module is made by using the
tool SWIG [13]. In addition, one should also install Swiginac [14], which is
a Python interface to GiNaC created by using SWIG. More about the usage
of the Python interface can be found in Section 7.

2.4 Examples and Tests

A series of tests are located in the subdir tests, these test serve as unit
test and document the features of SyFi as described in this tutorial. If the
tests are simple we use the function EQUAL OR DIE, an example is (see also
simple test.cpp

symbol x("x");

ex f = x*x;

ex intf = integral(x,0,1,f);

intf = eval_integ(intf);

EQUAL_OR_DIE(integral1, "1/3");

When the tests or computed expressions are bigger we typically store the
expressions in a GiNaC archive (.gar files) and compare the archive with a
previously created and verified archive. The following code demostrates how
the basis functions and degrees of freedom of a first order Lagrangian element
is computed, stored in an archive and then compared with the previously
verified basis functions and degrees of freedom.

15

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

int order = 1;

ReferenceTriangle triangle;

LagrangeFE fe(triangle, order);

// regression test

archive ar;

for (int i=0; i< fe.nbf(); i++) {

ar.archive_ex(fe.N(i) , istr("N",i).c_str());

ar.archive_ex(fe.dof(i) , istr("D",i).c_str());

}

ofstream vfile("fe_ex1.gar.v");

vfile << ar; vfile.close();

if(!compare_archives("fe_ex1.gar.v", "fe_ex1.gar.r")) {

cerr << "Failure!" << endl;

return -1;

}

All examples described in this tutorial are also implemented as tests in the
tests subdir.

2.5 GiNaC Tools

2.5.1 The symbol factory

In GiNaC, the identity of a symbol is not defined by its name, but by an
internal number. Because of this, the code

ex a = symbol("x");

ex b = symbol("x");

ex c = a-b;

16

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

does not yield 0 in c, since a and b refer to different symbols. To solve this
we have implemented a simple symbol factory, so we can refer to variables
by name without passing the symbol objects around everywhere. The user
can ask if a symbol exists, or get numbered symbols and vectors or matrices
of numbered symbols in a convenient way.

ex x1 = get_symbol("x");

ex x2 = get_symbol("x");

assert(is_zero(x1-x2));

ex u = get_symbolic_vector(3, "u");

ex A = get_symbolic_matrix(3, 3, "A");

ex c = isymb("c", 2);

assert(symbol_exists("c2"));

2.5.2 Symbols for spatial variables

Certain operations like the differential operators diff and grad needs to know
certain symbols to operate correctly. The spatial variables x,y,z and t are par-
ticularly important, and because of this we have a shortcut to these variables.
Operations like grad also need to know the number of spatial dimensions, of-
ten abbreviated nsd in SyFi. Therefore, a call to initSyFi(nsd) must be made
before one can use these operators. It is safe to call initSyFi more than once.
The spatial symbols x,y,z,t can also be retrieved from the symbol factory.

initSyFi(3);

int space_dim = SyFi::nsd;

ex x = SyFi::x;

ex y = SyFi::y;

ex z = SyFi::z;

ex t = SyFi::t;

// or:

ex x = get_symbol("x");

17

Chapter 3

A Finite Element

3.1 Basic Concepts

To keep the abstractions clear we briefly review the general definition of a
finite element, see e.g., Brenner and Scott [19] or Ciarlet [22].

Definition 3.1.1 (A Finite Element) A finite element consists of,

1. A polygonal domain, T .

2. A polynomial space, V .

3. A set of degrees of freedom (linear forms), Li : V → R, for i = 1, . . . , n,
where n = dim(V), that determines V uniquely.

Furthermore, to determine a basis in V , {Ni}n
i=1, we form the linear system

of equations,
Li(Nj) = δij, (3.1)

and solve it.

Example 3.1.1 (Linear Lagrangian element on the reference triangle)
In this example we describe how the linear Lagrangian element is defined on

19

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

the reference triangle. Let T be the unit triangle with vertices (0, 0), (1, 0),
and (0, 1). Furthermore, the polynomial space V consists of linear polyno-
mials, i.e., polynomials on the form N(x, y) = a + bx + cy. The degrees of
freedom for a linear Lagrangian element are simply the pointvalues at the
vertices, xi, Li(Nj) = Nj(xi). The degrees of freedom and (3.1) determined
aj, bj, and cj for each basis function Nj. For instance N1, which is on the
form a1 + b1x + c1y, is determined by,

Li(N1) = N1(xi) = δi1,

or written out as a system of linear equations,





1 0 0
1 1 0
1 0 1









a1

b1

c1



 =





1
0
0





Hence,

N1 = 1 − x − y.

The functions N2 and N3 can be determined similarly.

In the next sections we will go detailed through polygons, polynomial spaces
and degrees of freedom, and the corresponding software components.

3.2 Polygons

In the finite element method we need the concept of simple polygons to define
integration, polynomial spaces etc. The basic polygons are lines, triangles,
tetrahedra, and orthogonal rectangles and boxes. These basic components
will be briefly described in this section.

20

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Figure 3.1: A line.

r

(x0, y0, z0)

(x1, y1, z1)

3.2.1 Line

A line segment, L, between two points x0 = [x0, y0, z0] and x1 = [x1, y1, z1]
in 3D is defined as, see also Figure 3.2.1,

x = x0 + a t, (3.2)

y = y0 + b t, (3.3)

z = z0 + c t, (3.4)

t ∈ [0, 1], (3.5)

where a = x1 − x0, b = y1 − y0, and c = z1 − z0.

Integration of a function f(x, y, z) along the line segment L is performed by
substitution,

∫

L

f(x, y, z) dx dy dz =

∫ 1

0

f(x(t), y(t), z(t)) D dt, (3.6)

where D =
√

a2 + b2 + c2.

Software Component: Line

The class Line implements a general line. It is defined as follows (see Polygon.h):

21

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

class Line : public Polygon {

ex a_;

ex b_;

public:

Line() {}

Line(ex x0, ex x1, // x0_ and x1_ are points

string subscript = "");

~Line(){}

virtual int no_vertices();

virtual ex vertex(int i);

virtual ex repr(ex t);

virtual string str();

virtual ex integrate(ex f);

};

Most of the functions in this class are self-explanatory. However, the function
repr deserves special attention. The function repr returns the mathematical
definition of a line. To be precise, this function returns a list of expressions
(lst), where the items are the items in (3.2)-(3.5) (see also the example
below).

The basic usage of a line is as follows (see line ex1.cpp),

ex p0 = lst(0.0,0.0,0.0);

ex p1 = lst(1.0,1.0,1.0);

Line line(p0,p1);

// show usage of repr

symbol t("t");

ex l_repr = line.repr(t);

cout <<"l.repr "<<l_repr<<endl;

EQUAL_OR_DIE(l_repr, "{x==t,y==t,z==t,{t,0,1}}");

22

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

for (int i=0; i< l_repr.nops(); i++) {

cout <<"l_repr.op(" <<i<<"): "<<l_repr.op(i)<<endl;

}

// compute the integral of a function along the line

ex f = x*x + y*y*y + z;

ex intf = line.integrate(f);

cout <<"intf "<<intf<<endl;

EQUAL_OR_DIE(intf, "13/12");

The function EQUAL OR DIE compares the string representation of the expres-
sion with an expected expression represented as a character array. If the
string representation of the expression and the character array are not equal
the program dies, and this tells the programmer that the test faulted. The
reason for the use of this function is that our test examples also serve as
regression tests for the package.

3.2.2 Triangle

A triangle is defined in terms of three points x0, x1, and x2. Associated
with each triangle are three lines; the first line is between the points x1 and
x2, the second line is between the points x0 and x2, and the third line is
between the points x0 and x1. This is shown in Figure 3.2. The triangle can
be represented as

x = x0 + ar + bs, (3.7)

y = y0 + cr + ds, (3.8)

z = z0 + er + fs, (3.9)

s ∈ [0, 1 − r], (3.10)

r ∈ [0, 1], (3.11)

where (a, c, e) = (x1−x0, y1−y0, z1−z0) and (b, d, f) = (x2−x0, y2−y0, z2−z0).

Integration is performed by substitution,
∫

T

f(x, y, z) dx dy dz =

∫ 1

0

∫ 1−r

0

f(x, y, z) D ds dr,

23

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Figure 3.2: Triangle

r

s
t

(x0, y0, z0)

(x1, y1, z1)

(x2, y2, z2)

where D =
√

(cf − de)2 + (af − be)2 + (ad − bc)2.

Software Component: Triangle

The class Triangle implements a general triangle. It is defined as follows (see
Polygon.h):

class Triangle : public Polygon {

public:

Triangle(ex x0, ex x1, ex x1, string subscript = "");

Triangle() {}

~Triangle(){}

virtual int no_vertices();

virtual ex vertex(int i);

virtual Line line(int i);

virtual ex repr();

24

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

virtual string str();

virtual ex integrate(ex f);

};

Here the function repr returns a list with the items (3.7)-(3.11). In addition
to the functions also found in Line, Triangle has a function line(int i), re-
turning a line.

The basic usage of a triangle is as follows (see triangle ex1.cpp),

ex p0 = lst(0.0,0.0,1.0);

ex p1 = lst(1.0,0.0,1.0);

ex p2 = lst(0.0,1.0,1.0);

Triangle triangle(p0,p1,p2);

ex repr = triangle.repr();

cout <<"t.repr "<<repr<<endl;

EQUAL_OR_DIE(repr, "{x==r,y==s,z==1.0,{r,0,1},{s,0,1-r}}");

ex f = x*y*z;

ex intf = triangle.integrate(f);

cout <<"intf "<<intf<<endl;

EQUAL_OR_DIE(intf, "1/24");

3.2.3 Tetrahedron

A tetrahedron is defined by four points x0, x1, x2, and x3. Associated with
a tetrahedron are four triangles and six lines. The convention used so far is
that

• the first line connects x0 and x1,

• the second line connects x0 and x2,

25

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

• the third line connects x0 and x3,

• the fourth line connects x1 and x2,

• the fifth line connects x1 and x3,

• the sixth line connects x2 and x3.

The i’th triangle contains all vertices except the i’th vertex. The tetrahedron
can be represented as, see also Figure 3.3,

x = x0 + ar + bs + ct, (3.12)

y = y0 + dr + es + ft, (3.13)

z = z0 + gr + hs + kt, (3.14)

t ∈ [0, 1 − r − s], (3.15)

s ∈ [0, 1 − r], (3.16)

r ∈ [0, 1], (3.17)

where (a, d, g) = (x1−x0, y1−y0, z1−z0), (b, e, h) = (x2−x0, y2−y0, z2−z0),
and (c, f, k) = (x3 − x0, y3 − y0, z3 − z0).

As earlier, integration is performed with substitution,
∫

T

f(x, y, z) dx dy dz =

∫ 1

0

∫ 1−r

0

∫ 1−r−s

0

f(x(r, s, t), y(r, s, t), z(r, s, t)) D dt ds dr,

where D is the determinant of,




a b c
d e f
g h k



 .

Software Component: Tetrahedron

The class Tetrahedron implements a general tetrahedron. It is defined as
follows (see Polygon.h):

26

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Figure 3.3: A tetrahedron.

s

r

t

u

w

v

(x0, y0, z0)

(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

class Tetrahedron : public Polygon {

public:

Tetrahedron(string subscript) {}

Tetrahedron(ex x0, ex x1, ex x1, ex x2, string s= "");

~Tetrahedron(){}

virtual int no_vertices();

virtual ex vertex(int i);

virtual Line line(int i);

virtual Triangle triangle(int i);

virtual ex repr();

virtual string str();

virtual ex integrate(ex f);

};

The function repr returns a list representing (3.12) –(3.17). In addition to
the usual functions it has the functions line(int i) and triangle(int i) for

27

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

returning the i’th line and the i’th triangle, respectively.

Its basic usage is as follows (see tetrahedron ex1.cpp),

ex p0 = lst(0.0,0.0,0.0);

ex p1 = lst(1.0,0.0,0.0);

ex p2 = lst(0.0,1.0,0.0);

ex p3 = lst(0.0,0.0,1.0);

Tetrahedron tetrahedron(p0,p1,p2,p3);

ex repr = tetrahedron.repr();

cout <<"t.repr "<<repr<<endl;

EQUAL_OR_DIE(repr, "{x==r,y==s,z==t,{r,0,1},

{s,0,1-r},{t,0,1-s-r}}");

ex f = x*y*z;

ex intf = tetrahedron.integrate(f);

EQUAL_OR_DIE(intf, "1/720");

3.2.4 Rectangle

The rectangles currently supported by SyFi are orthogonal. Such a rectangle
is defined in terms of two points x0 and x1, as shown in Figure 3.4.

The rectangle can be represented as

x = x0 + ar, (3.18)

y = y0 + bs, (3.19)

z = z0 + ct, (3.20)

r ∈ [0, 1], (3.21)

s ∈ [0, 1], (3.22)

t ∈ [0, 1], (3.23)

28

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Figure 3.4: A rectangle.

(x0, y0, z0)

(x1, y1, z1)

where a = x1 − x0, b = y1 − y0, and c = z1 − z0. Notice that either a, b, or c
needs to be zero, or else (3.18)-(3.23) defines a box (which will be described
later).

As earlier, integration is performed with substitution,
∫

R

f(x, y, z) dx dy dz =

∫ 1

0

∫ 1

0

∫ 1

0

f(x(r, s, t), y(r, s, t), z(r, s, t)) D dt ds dr,

where D = ab if c = 0, D = bc, if a = 0, and D = ac, if b = 0.

Software Component: Rectangle

The class Rectangle implements a general orthogonal rectangle. It is defined
as follows (see Polygon.h):

class Rectangle : public Polygon {

public:

29

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Rectangle(GiNaC::ex p0, GiNaC::ex p1, string s = "");

Rectangle() {}

virtual ~Rectangle(){}

virtual int no_vertices();

virtual GiNaC::ex vertex(int i);

virtual Line line(int i);

virtual GiNaC::ex repr(Repr_format format = SUBS_PERFORMED);

virtual string str();

virtual GiNaC::ex integrate(GiNaC::ex f);

};

As described with the previous polygons, the function repr returns a list with
the items (3.18)-(3.23). The basic usage of the rectangle is as follows (see
rectangle ex1.cpp),

ex f = x*y;

ex p0 = lst(0.0,0.0);

ex p1 = lst(1.0,1.0);

Rectangle rectangle(p0,p1);

ex repr = rectangle.repr();

cout <<"s.repr "<<repr<<endl;

ex intf = rectangle.integrate(f);

cout <<"intf "<<intf<<endl;

ex f2 = (x+1)*y*z;

p0 = lst(0.0,0.0,1.0);

p1 = lst(0.0,1.0,0.0);

Rectangle rectangle2(p0,p1);

ex repr2 = rectangle2.repr();

30

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

cout <<"s2.repr "<<repr2<<endl;

ex intf2 = rectangle2.integrate(f2);

cout <<"intf2 "<<intf2<<endl;

3.2.5 Box

Currently, SyFi only supports orthogonal boxes (as was also the case with
rectangles). Such a box is defined in terms of two points x0 and x1, as can
be seen in Figure 3.5. The box can be represented as

x = x0 + ar, (3.24)

y = y0 + bs, (3.25)

z = z0 + ct, (3.26)

r ∈ [0, 1], (3.27)

s ∈ [0, 1], (3.28)

t ∈ [0, 1], (3.29)

where a = x1 − x0, b = y1 − y0, and c = z1 − z0.

As earlier, integration is performed with substitution,

∫

R

f(x, y, z) dx dy dz =

∫ 1

0

∫ 1

0

∫ 1

0

f(x(r, s, t), y(r, s, t), z(r, s, t)) D dt ds dr,

where D = abc.

Software Component: Box

The class Box implements a general orthogonal box. It is defined as follows
(see Polygon.h):

31

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Figure 3.5: A Box.

(x0, y0, z0)

(x1, y1, z1)

class Box: public Polygon {

public:

Box(GiNaC::ex p0, GiNaC::ex p1, string subscript = "");

Box(){}

virtual ~Box(){}

virtual int no_vertices();

virtual GiNaC::ex vertex(int i);

virtual Line line(int i);

virtual GiNaC::ex repr(Repr_format format = SUBS_PERFORMED);

virtual string str();

virtual GiNaC::ex integrate(GiNaC::ex f);

};

The repr function returns a list of the definition of a orthogonal box in (3.24)-
(3.29). A box can be used as follows (see box ex1.cpp),

32

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

ex p0 = lst(-1.0,-1.0,-1.0);

ex p1 = lst(1.0, 1.0, 1.0);

Box box(p0,p1);

ex repr = box.repr();

cout <<"b.repr "<<repr<<endl;

ex intf = box.integrate(f);

cout <<"intf "<<intf<<endl;

Finally, we also mention that in addition to the above mentioned classes, Line,
Triangle, Tetrahedron, Rectangle, and Box, we have implemented the corre-
sponding reference geometries in the subclasses ReferenceLine, ReferenceTriangle,
ReferenceTetrahedron, ReferenceRectangle, and ReferenceBox.

3.3 Polynomial Spaces

The space of polynomials of degree less or equal to n, Pn, plays a fundamental
role in the construction of finite elements. There are many ways to represent
this polynomial space. The perhaps visually nicest representation is having
it spanned by the basis (in 1D) 1, x, x2, . . . , xn. This representation is not
suitable for polynomials of high degree1.
In 1D, Pn is spanned by functions on the form

v = a0 + a1x + . . . anx
n =

n
∑

i=0

aix
i (3.30)

In 2D on triangles, Pn is spanned by functions on the form:

v =

i+j<=n
∑

i,j=0

aijx
iyj (3.31)

1In that case, one should use the Bernstein or Legendre polynomials.

33

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

In 2D on quadrilaterals, Pn is spanned by functions on the form:

v =

i,j<=n
∑

i,j=0

aijx
iyj (3.32)

The corresponding polynomial spaces in 3D are completely analogous.

Software Component: Polynomial Space

The following functions generate symbolic expressions for the above polyno-
mial spaces (3.30), (3.31), and (3.32), their corresponding polynomial spaces
in 3D and their vector counterparts.

// generates a polynomial of any order on a line,

// a triangle, or a tetrahedron

ex pol(int order, int nsd, const string a);

// generates a vector polynomial of any order on a line,

// a triangle or a tetrahedron

lst polv(int order, int nsd, const string a);

// generates a polynomial of any order on a square or a box

ex polb(int order, int nsd, const string a);

// generates a vector polynomial of any order

// on a square or a box

lst polbv(int order, int nsd, const string a);

The function pol returns a list with the following 3 items,

1. The polynom, e.g., a0 + a1x + . . . + anx
n in 1D.

2. A list of variables, e.g., a0, a1, . . . , an in 1D.

3. A list containing the basis, e.g., 1, x, . . . , xn in 1D.

34

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

The functions polb, polv, and polbv return lists that are completely analogous.

These abstract polynomials (or polynomial spaces) can be easily manipu-
lated, e.g., (see also pol.cpp),

int order = 2;

int nsd = 2;

ex polynom_space = pol(order,nsd, "a");

cout <<"polynom_space "<<polynom_space<<endl;

ex p = polynom_space.op(0);

cout <<"polynom p = "<<p<<endl;

EQUAL_OR_DIE(p,"y^2*a5+x^2*a3+a2*y+y*x*a4+a0+a1*x");

ex dpdx = diff(p,x);

cout <<"dpdx = "<<dpdx<<endl;

EQUAL_OR_DIE(dpdx, "y*a4+a1+2*x*a3");

Triangle triangle(lst(0,0), lst(1,0), lst(0,1));

ex intp = triangle.integrate(p);

cout <<"integral of p on reference triangle="<<intp<<endl;

EQUAL_OR_DIE(intp, "1/6*a2+1/6*a1+1/12*a5

+1/2*a0+1/24*a4+1/12*a3");

3.3.1 Bernstein Polynomials

Another basis for Pn is the Bernstein polynomials. This basis is much better
suited for polynomials of high degree. Moreover, these polynomials can be
easily expressed in barycentric coordinates, which makes them easy to adapt
to, e.g., faces of polygons2 etc.

2This will be used in the definition of the Raviart-Thomas element.

35

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

In 1D, the polynomial basis is on the form,

Bi,n =

(

i

n

)

xi(1 − x)n−i, i = 0, . . . , n.

And with this basis, Pn can be spanned by functions on the form,

v = a0B0,n + a1B1,n + . . . anBn,n.

One reason for the widespread use of these polynomials is that they adapt
easily to general triangles and tetrahedra, by using barycentric coordinates.
Let b1, b2, and b3 be the barycentric coordinates for the triangle shown in
Figure 3.2. Then the basis is on the form,

Bi,j,k,n =
n!

i!j!k!
bi
1b

j
2b

k
3, for i + j + k = n.

and Pn is spanned by functions on the form,

v =
∑

i+j+k=n

ai,j,kBi,j,k,n.

The Bernstein polynomials in 3D are completely analogous.

Software Components: Bernstein polynomials

The following functions generate symbolic expressions for P
n using the Bern-

stein basis,

// polynom of arbitrary order on a line, a triangle,

// or a tetrahedron using the Bernstein basis

ex bernstein(int order, Polygon& p, const string a);

// vector polynom of arbitrary order on a line, a triangle,

// or a tetrahedron using the Bernstein basis

lst bernsteinv(int order, Polygon& p, const string a);

36

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

These functions return lists that are analogous to the lists made by the
functions pol and polv described on page 34.

As described earlier, GiNaC has the tools for manipulating these polynomial
spaces, (see also pol.cpp)

ex polynom_space2 = bernstein(order,triangle, "a");

ex p2 = polynom_space2.op(0);

cout <<"polynom p2 = "<<p2<<endl;

EQUAL_OR_DIE(p2, "y^2*a0+2*(1-y-x)*x*a4+2*(1-y-x)*a3*y

+(1-y-x)^2*a5+2*a1*y*x+a2*x^2");

ex dp2dx = diff(p2,x);

cout <<"dp2dx = "<<dp2dx<<endl;

EQUAL_OR_DIE(dp2dx, "2*a1*y+2*(-1+y+x)*a5+2*a2*x

+2*(1-y-x)*a4-2*a3*y-2*x*a4");

ex intp2 = triangle.integrate(p2);

cout <<"integral of p2 on reference triangle="<<intp<<endl;

EQUAL_OR_DIE(intp2, "1/12*a3+1/12*a2+1/12*a1+1/12*a5

+1/12*a0+1/12*a4");

3.3.2 Legendre Polynomials

A popular polynomial basis for polygons that are either rectangles or boxes
are the Legendre polynomials. This polynomial basis is also usable to repre-
sent polynomials of high degree. The basis is defined on the interval [−1, 1],
as

Lk(x) =
1

2kk!

dk

dxk
(x2 − 1), k = 0, 1, . . . ,

A nice feature with these polynomials is that they are orthogonal with respect
to the L2 inner product, i.e.,

∫ 1

−1

Lk(x)Ll(x) dx =

{

2
2k+1

, k = l,

0, k 6= l,

37

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

The Legendre polynomials are extended to 2D and 3D simply by taking the
tensor product,

Lk,l,m(x, y, z) = Lk(x)Ll(y)Lm(z).

and P
n is defined by functions on the form (in 3D),

v =

k,l,m<=n
∑

k,l,m=0

ak,l,mLk,l,m.

Software Components: Legendre polynomials

The following functions generate symbolic expressions for P
n using the Leg-

endre basis,

// generates a Legendre polynom of arbitrary order

GiNaC::ex legendre(int order, int nsd, const string a);

// generates a Legendre vector polynom of arbitrary order

GiNaC::lst legendrev(int no_fields, int order,

int nsd, const string a);

These functions return lists that are analogous to the lists made by the
functions pol and polv described on page 34.

The following code demonstrates the use of the Legendre polynomials, and
(when runned) that the basis is orthogonal (see also legendre.cpp).

int order = 2;

int nsd = 2;

ex polynom_space = legendre(order,nsd, "a");

cout <<"polynom_space "<<polynom_space<<endl;

ex p = polynom_space.op(0);

cout <<"polynom p = "<<p<<endl;

38

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

ex dpdx = diff(p,x);

cout <<"dpdx = "<<dpdx<<endl;

ex p0 = lst(-1,-1);

ex p1 = lst(1,1);

Rectangle rectangle(p0,p1) ;

ex basis = polynom_space.op(2);

for (int i=0; i< basis.nops(); i++) {

cout <<"i "<<i<<endl;

ex integrand = p*basis.op(i);

ex ai = rectangle.integrate(integrand);

cout <<"ai "<<ai<<endl;

}

3.3.3 Homogeneous Polynomials

Another set of polynomials which sometimes are useful are the set of homo-
geneous polynomials H

n. These are polynomials where all terms have the
same degree. H

n is in 2D spanned by polynomials on the form:

v =
∑

i, j,

i + j = n

ai,j,kx
iyj

Software Components: Homogeneous polynomials

The following functions generate symbolic expressions for H
n,

// generates a homogeneous polynom of arbitrary order

GiNaC::ex homogenous_pol(int order, int nsd, const string a);

// generates a homogenous vector polynom of arbitrary order

39

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

GiNaC::lst homogenous_polv(int no_fields, int order,

int nsd, const string a);

The use of these polynomials are similar to the other polynomials described
earlier.

3.4 A Finite Element

Before we start describing how to construct a finite element based on the
Definition 3.1.1, we will concentrate on the usage of a finite element. A
finite element has only two interesting components, the basis functions Ni

and the corresponding degrees of freedom Li. The basis functions (and their
derivatives) are used to compute the element matrices and the element vec-
tors, while the degrees of freedom are used to define the mapping between
the element matrices/vectors and the global matrix/vector. As we see in the
following, the observation that only these two components are needed leads
us to a minimalistic definition of a finite element in our software tools.

Software Component: Finite Element

Due to the powerful expression class in GiNaC, ex, our base class for the finite
elements can be very small. Both the basis function Ni and the corresponding
degree of freedom Li can be well represented as an ex. Hence, the following
definition of a finite element is suitable,

class FE {

public:

FE() {}

~FE() {}

virtual void set_polygon(Polygon& p); // Set domain

virtual Polygon& get_polygon(); // Get polygonal domain

40

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

virtual ex N(int i); // The i’th basis function

virtual ex dof(int i); // The i’th degree of freedom

virtual int nbf(); // The number of basis

// functions/degrees of

// freedom

};

The usage of a finite element is as follows (see fe ex1.cpp where Lagrangian
elements are used),

ex Ni;

ex gradNi;

ex dofi;

for (int i=0; i< fe.nbf(); i++) {

Ni = fe.N(i);

gradNi = grad(Ni);

dofi = fe.dof(i);

cout <<"The basis function, N("<<i<<")="<<Ni<<endl;

cout <<"The gradient of N("<<i<<")="<<gradNi<<endl;

cout <<"The corresponding dof, L("<<i<<")="<<dofi<<endl;

}

When you run fe ex1, it produces the following output:

The basis function, N(1)=2*y^2-y

The gradient of N(1)=[[0],[-1+4*y]]

The corresponding dof, L(1)={0,1}

The basis function, N(2)=4*y*x

The gradient of N(2)=[[4*y],[4*x]]

The corresponding dof, L(2)={1/2,1/2}

The basis function, N(3)=2*x^2-x

The gradient of N(3)=[[-1+4*x],[0]]

The corresponding dof, L(3)={1,0}

The basis function, N(4)=-4*y*x-4*y^2+4*y

The gradient of N(4)=[[-4*y],[4-8*y-4*x]]

41

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

The corresponding dof, L(4)={0,1/2}

The basis function, N(5)=-4*y*x-4*x^2+4*x

The gradient of N(5)=[[4-4*y-8*x],[-4*x]]

The corresponding dof, L(5)={1/2,0}

The basis function, N(6)=1+4*y*x+2*x^2+2*y^2-3*y-3*x

The gradient of N(6)=[[-3+4*y+4*x],[-3+4*y+4*x]]

The corresponding dof, L(6)={0,0}

The computation of the element matrix for a Poisson problem is as follows
(see fe ex2.cpp),

Triangle T(lst(0,0), lst(1,0), lst(0,1), "t");

int order = 2;

std::map<std::pair<int,int>, ex> A;

std::pair<int,int> index;

LagrangeFE fe;

fe.set_order(order);

fe.set_polygon(T);

fe.compute_basis_functions();

for (int i=0; i< fe.nbf(); i++) {

index.first = i;

for (int j=0; j< fe.nbf(); j++) {

index.second = j;

ex nabla = inner(grad(fe.N(i)), grad(fe.N(j)));

ex Aij = T.integrate(nabla);

A[index] = Aij;

}

}

Here, we have used the class LagrangeFE, which is a subclass of FE, that im-
plements Lagrangian elements of arbitrary order. The construction of this
element is described later in Section 4.1.1.

42

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

3.5 Degrees of Freedom

As we have seen earlier, for each element e, we have a local set of degrees
of freedom Le

i , which in general are linear forms on the polynomial space.
Degrees of freedom and linear forms are quite general concepts, but the reader
not familiar with this general definition can think of them for instance as
nodal values at vertices, i.e.,

Li(v) = v(xi).

Another example is the integral of v over an edge (or a face), ei, of the
polygon,

Li(v) =

∫

ei

v ds.

The most important thing with the degrees of freedom, besides defining a
basis for the polynomial space, is that they provide a mapping from the local
degree of freedom, Le

i , on a given element, e, to the global degree of freedom,
Lj. This mapping does in turn provide the mapping between the element
matrices/vectors and the global matrix/vector. Hence, we have the following
mapping,

(e, i) → Le
i → Lj → j. (3.33)

Here e, i, and j are integers, while Le
i and Lj are degrees of freedom (or linear

forms). Additionally, given a global degree of freedom we have a mapping to
the local degrees of freedom,

j → Lj → Le
i(e)e∈E(j)

→ (e, i(e))e∈E(j). (3.34)

Here E(j) is the set of elements sharing the degree of freedom Lj.

Software Component: Degrees of Freedom Handler

A degree of freedom, local or global, is well represented as an ex (in fact
ex is more general than a linear form). Hence, to implement proper tools
for handling the degrees of freedom, we only need to provide the mappings
(3.33) and (3.34). We have implemented a class Dof which provides these
mappings,

43

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

class Dof {

protected:

int counter;

// the structures loc2dof, dof2index, and doc2loc

// are completely dynamic. They are all initialized

// and updated by insert_dof(int e, int d, ex dof)

// (int e, int i) -> ex Li

map<pair<int,int>, ex> loc2dof;

// (ex Lj) -> int j

map<ex,int,ex_is_less> dof2index;

// (int j) -> ex Lj

map<int,ex> index2dof;

// (ex Lj) -> vector< pair<e1, i1>, .. pair<en, in> >

map <ex, vector<pair<int,int> >,ex_is_less > dof2loc;

public:

Dof() { counter = 0; }

~Dof() {}

int insert_dof(int e, int j, ex Lj); // update internal

// structures

// Helper functions to be used when the dofs have been set.

// These do not modify the internal structure

int glob_dof(int e, int j);

int glob_dof(ex Lj);

ex glob_dof(int j);

int size();

vector<pair<int, int> > glob2loc(int j);

void clear();

};

Here, the function int insert dof(int e, int i, ex Li) creates the various
mappings between the local dof Le

i , in element e, and the global dof Lj. This
is the only function for initializing the mappings. After the mappings have
been initialized, they can be used as follows,

44

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

• int glob dof(int e, int i) is the mapping (e, i) → j,

• int glob dof(ex Lj) is the mapping Lj → j,

• ex glob dof(int j) is the mapping j → Lj,

• vector<pair<int, int> > glob2loc(int j) is the mapping j → (e, i(e)).

The following code shows how to make two Lagrangian elements, imple-
mented by the class LagrangeFE (The description of LagrangeFE is postponed
until Section sec:fem:examples), assign their local degrees of freedom to the
global set of degrees of freedom in Dof, and print out the local degrees of
freedom associated with each global degree of freedom (see also dof ex.cpp):

Dof dof;

Triangle t1(lst(0,0), lst(1,0), lst(0,1));

Triangle t2(lst(1,1), lst(1,0), lst(0,1));

// Create a finite element and corresponding

// degrees of freedom on the first triangle

int order = 2;

LagrangeFE fe;

fe.set_order(order);

fe.set_polygon(t1);

fe.compute_basis_functions();

for (int i=0; i< fe.nbf(); i++) {

cout <<"fe.dof("<<i<<")= "<<fe.dof(i)<<endl;

// insert local dof in global set of dofs

dof.insert_dof(1,i, fe.dof(i));

}

// Create a finite element and corresponding

// degrees of freedom on the second triangle

fe.set_polygon(t2);

fe.compute_basis_functions();

for (int i=0; i< fe.nbf(); i++) {

cout <<"fe.dof("<<i<<")= "<<fe.dof(i)<<endl;

45

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

// insert local dof in global set of dofs

dof.insert_dof(2,i, fe.dof(i));

}

// Print out the global degrees of freedom an their

// corresponding local degrees of freedom

vector<pair<int,int> > vec;

pair<int,int> index;

ex exdof;

for (int i=1; i<= dof.size(); i++) {

exdof = dof.glob_dof(i);

vec = dof.glob2loc(i);

cout <<"global dof " <<i<<" dof "<<exdof<<endl;

for (int j=0; j<vec.size(); j++) {

index = vec[j];

cout <<" element "<<index.first<<

" local dof "<<index.second<<endl;

}

}

In the previous example, the reader that also runs the companion code will
notice that the degrees of freedom in LagrangeFE are not linear forms on
polynomial spaces, i.e.,

Li(v) = v(xi).

They are instead represented as points, xi, which is the usual way to rep-
resent these degrees of freedom in finite element software (because of their
obvious simplicity compared to linear forms on polynomial spaces). Hence,
the degrees of freedom in LagrangeFE are actually implemented in the stan-
dard fashion. However, the tools we have described are far more general than
conventional finite element codes. Still the tools are equally simple to use,
due to the powerful expression class ex in GiNaC.

Our next example concerns degrees of freedom which are line integrals over
the edges of triangles. Let T be a triangle with the edges ei, i ∈ [1, 3]. The
degree of freedom associated with ei is then simply,

Li(v) =

∫

ei

v ds.

46

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

As our next example shows, such degrees of freedom can be implemented
equally easy as the point values shown in the previous example (see dof ex2.cpp):

Dof dof;

// create two triangles

Triangle t1(lst(0,0), lst(1,0), lst(0,1));

Triangle t2(lst(1,1), lst(1,0), lst(0,1));

// create the polynomial space

ex Nj = pol(1,2,"a");

cout <<"Nj " <<Nj<<endl;

Line line;

ex dofi;

// dofs on first triangle

for (int i=1; i<= 3; i++) {

line = t1.line(i); // pick out the i’th line

dofi = line.integrate(Nj); // create the dof which is

// a line integral

dof.insert_dof(1,i, dofi); // insert local dof in

// global set of dofs

}

// dofs on second triangle

for (int i=1; i<= 3; i++) {

line = t2.line(i); // pick out the i’th line

dofi = line.integrate(Nj); // create the dof which is

// a line integral

dof.insert_dof(2,i, dofi); // insert local dof in

// global set of dofs

}

47

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Software Component: Degrees of Freedom Handler Template

We will also describe an equally general degree of freedom handler which is
not based on GiNaC, but which employs templates instead. This template
class relies on two classes, the degree of freedom D and a comparison function.
The rest is basically identical to the previously described Dof, except that we
have added two boolean variables which can be used to turn off the com-
putation of the global to local mapping in (3.34) and the j → Nj mapping.
This class can be found in the header file DofT.h:

template <class D, class C>

class DofT {

protected:

bool create_index2dof, create_dof2loc;

int counter;

// the structures loc2dof, dof2index, and doc2loc are

// completely dynamic. They are all initialized and

// updated by insert_dof(int e, int i, ex Li).

// (int e, int i) -> int j

map<pair<int,int>, int> loc2dof;

// (ex Lj) -> int j

map<D,int,C> dof2index;

typename map<D,int,C>:: iterator iter;

// (int j) -> ex Lj

map<int,D> index2dof;

// (ex j) -> vector< pair<e1, i1>, .. pair<en, in> >

map <int, vector<pair<int,int> > > dof2loc;

public:

DofT(bool create_index2dof_ = false,

bool create_dof2loc_ = false)

{

counter = -1;

create_index2dof = create_index2dof_;

create_dof2loc = create_dof2loc;

48

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

}

~DofT() {}

int insert_dof(int e, int i, D Li); // update internal

// structures

// Helper functions to be used when the dofs have been set.

// These do not modify the internal structure.

int glob_dof(int e, int i);

int glob_dof(D Lj);

D glob_dof(int j);

int size();

vector<pair<int, int> > glob2loc(int j);

void clear();

};

The typical way to represent most common degrees of freedom is as points.
Hence, we have implemented a simple point class Ptv and its comparison
function. The header file (see also Ptv.h) is as follows:

class Ptv {

private:

int dim;

double* v;

static double tol;

public:

Ptv(int size_);

Ptv(int size_, double* v_);

Ptv(const Ptv& p);

Ptv();

virtual ~Ptv();

const int size() const;

const double& operator [] (int i) const;

49

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

double& operator [] (int i);

Ptv& operator = (const Ptv& p);

bool is_less(const Ptv& p) const;

};

struct Ptv_is_less :

public std::binary_function<Ptv, Ptv, bool> {

bool operator() (const Ptv &lh, const Ptv &rh) const {

return lh.is_less(rh); }

};

std::ostream & operator<< (std::ostream& os, const Ptv& p);

The Ptv class simply contain an array of doubles with variable size. The
comparison function should check whether a point x ∈ R

n is less than y ∈ R
m,

which is not necessarily obvious how to do. For instance, which is the smallest
of x1 = (1, 0) ∈ R

2, x2 = (0, 1) ∈ R
2 and x3 = (0, 0, 1) ∈ R

3 ? There are
many possible ways to compare points. The convention we have chosen so
far is to first check the size of the points. Hence, x < y, where x ∈ R

n and
y ∈ R

m, if n < m. If n = m, then x < y if x0 < y0. If x0 = y0, then x < y
if x1 < y1 and we continue in this fashion, if xj = yj, 0 ≤ j < i then x < y if
xi < yj. Notice that this comparison operator only affects the ordering of the
degrees of freedom internally in the STL map structure. But it might be that
other comparison conventions will speed up the search and insert routines in
map.

Finally, we remark that the Ptv class and DofT can be used also for degrees of
freedom associated with lines, edges, faces or general polygons. For instance
the edge of a 2D triangle, between the points x0 = (x0, y0) and x1 = (x1, y1)
can be represented as a point in R

4, e.g., (x0, y0, x1, y1) if x0 < x1 and
(x1, y1, x0, y0) otherwise. Another simpler approach is to represent an edge
by its midpoint.

For degrees of freedom that are not well represented as points we have cre-
ated the structure OrderedPtvSet. This class contains a ordered set of points

50

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Ptv, where the ordering is determined by the Ptv::less function. The class
declaraton is as follows (see also OrderedPtvSet.h):

class OrderedPtvSet

{

vector<Ptv> Ptvs;

public:

OrderedPtvSet();

OrderedPtvSet(const Ptv& p0, const Ptv& p1);

OrderedPtvSet(const Ptv& p0, const Ptv& p1, const Ptv& p2);

OrderedPtvSet(const Ptv& p0, const Ptv& p1, const Ptv& p2,

const Ptv& p3);

virtual ~OrderedPtvSet();

void append(const Ptv& p);

int size() const;

const Ptv& operator [] (int i) const;

Ptv& operator [] (int i);

OrderedPtvSet& operator = (const OrderedPtvSet& p);

bool less(const OrderedPtvSet& s) const;

};

51

Chapter 4

Some Examples of Finite
Elements

Earlier in Section 3.4, we described the usage of a general finite element. In
this section we will show how various finite elements are constructed/implemented
in SyFi.

4.1 Finite Elements in H1

4.1.1 The Lagrangian Element

We will describe the construction of a Lagrangian element on a 2D triangle.
The actual implementation of the element in both 1D, 2D and 3D can be
found in the class LagrangeFE.

As we saw in Section 3.3, the polynomial space Pn in 2D can be written on
the form

N =

i+j<=n
∑

i,j=0

aijx
iyj.

Hence, to determine the basis functions Nk we simply represented them in

53

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

abstract form,

Nk =

i+j<=n
∑

i,j=0

ak
ijx

iyj.

Then the coefficients ak
ij are to be determined by the (n+1)(n+2)/2 degrees

of freedom that are the nodal values at the the points xi, i.e.,

Li(Nk) = Nk(xi).

Hence, we need a set of (n + 1)(n + 2)/2 nodal points to determine the
coefficients ak

ij for each basis function. We have chosen to use the Bezier
ordinates. When this is done, it is simply a matter of solving the linear
system

Li(Nk) = Nk(xi) = δik,

for each basis function Nk.

Software Component: The Lagrangian Element

The Lagrangian element is implemented as a subclass of StandardFE. The
class definition is:

class LagrangeFE : public StandardFE {

public:

LagrangeFE() {}

virtual ~LagrangeFE() {}

virtual void set_order(int order);

virtual void set_polygon(Polygon& p);

virtual void compute_basis_functions();

virtual int nbf();

virtual GiNaC::ex N(int i);

virtual GiNaC::ex dof(int i);

};

54

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

The Construction of the Lagrangian Element

The Lagrangian element of arbitrary order in 1D, 2D, and 3D, is implemented
in LagrangeFE.cpp. The following code is taken from fe ex3.cpp.

Triangle t(lst(0,0), lst(1,0), lst(0,1));

int order = 2; //second order elements

ex polynom;

lst variables;

// the polynomial spaces on the form:

// first item, the polynom:

// a0 + a1*x + a2*y + a3*x^2 + a4*x*y ...

// second item, the coefficients:

// a0, a1, a2, ...

// third item, the basis:

1, x, y, x^2

// Could also do:

// GiNaC::ex polynom_space = bernstein(order, t, "a");

ex polynom_space = pol(order, 2, "a");

ex polynom = polynom_space.op(0);

// the variables a0,a1,a2 ..

variables = ex_to<lst>(polynom_space.op(1));

ex Nj;

// The Bezier ordinates in which the

// basis function should be either 0 or 1

lst points = bezier_ordinates(t,order);

// Loop over all basis functions Nj and all points.

// Each basis function Nj is determined

// by a set of linear equations:

// Nj(xi) = dirac(i,j)

// This system of equations is then solved by lsolve

for (int j=1; j <= points.nops(); j++) {

lst equations;

55

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

int i=0;

for (int i=1; i<= points.nops() ; i++) {

// The point xi

ex point = points.op(i-1);

// The equation Nj(x) = dirac(i,j)

ex eq = polynom == dirac(i,j);

// Substitute x = xi and y = yi and

// appended the equation to the list of equations

// to the list of equations

equations.append(eq.subs(lst(x == point.op(0) ,

y == point.op(1))));

}

// We solve the linear system

ex subs = lsolve(equations, variables);

// Substitute to get the Nj

Nj = polynom.subs(subs);

cout <<"Nj "<<Nj<<endl;

}

In this example the degrees of freedom are very simple. It is only a matter
of evaluating the function vk in the point xi (which in GiNaC is performed
by substitution). Later we will see that more advanced degrees of freedom
are readily available since we have stored the degrees of freedom as a set of
exes.

4.1.2 The Crouizex-Raviart Element

The Crouizex-Raviart element [23] is the nonconforming equivalent of linear
continuous Lagrangian elements. The degrees of freedom are the values at
the midpoint of the sides, i.e.,

Li(v) = v(xm(ei)),

56

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

where xm(ei) is the midpoint on the edge, ei. An equivalent definition of the
degrees of freedom is,

Li(v) =

∫

ei

v ds,

This is the definition we will use.

Software Component: The Crouzeix-Raviart Element

The Crouzeix-Raviart class definition is similar to class defined for the La-
grangian element:

class CrouzeixRaviart : public StandardFE {

public:

CrouzeixRaviart();

virtual ~CrouzeixRaviart() {}

void set_order(int order);

void set_polygon(Polygon& p);

void compute_basis_functions();

virtual int nbf();

virtual GiNaC::ex N(int i);

virtual GiNaC::ex dof(int i);

};

The Construction of the Crouzeix-Raviart Element

The following code, which is from the file CrouzeixRaviart.cpp, shows how
this element can be defined in 2D. The definition of the element in 3D can
also be found in this file.

Triangle triangle;

// create the polynomial space

57

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

ex polynom_space = bernstein(1, triangle, "a");

ex polynom = polynom_space.op(0);

ex variables = polynom_space.op(1);

ex basis = polynom_space.op(2);

// create the dofs

int counter = 0;

symbol t("t");

for (int i=1; i<= 3; i++) {

Line line = triangle.line(i);

ex dofi = line.integrate(polynom);

dofs.insert(dofs.end(),dofi);

}

// solve the linear system to compute

// each of the basis functions

for (int i=1; i<= 3; i++) {

lst equations;

for (int j=1; j<= 3; j++) {

equations.append(dofs[j-1] == dirac(i,j));

}

ex sub = lsolve(equations, variables);

ex Ni = polynom.subs(sub);

Ns.insert(Ns.end(),Ni);

}

This element can be used in a standard fashion, (see also crouzeixraviart ex.cpp),

CrouzeixRaviart fe;

fe.set_order(1);

fe.set_polygon(p);

fe.compute_basis_functions();

for (int i=0; i< fe.nbf(); i++) {

cout <<"fe.N("<<i<<")="<<fe.N(i)<<endl;

}

58

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

See also the Python implementation of this element in Section 7.

4.2 Finite Elements in L2

4.2.1 The P0 Element

The P0 element consists of piecewise constants, i.e.,

v|T = 1,

where T is the polygon. This element is discontinuous across elements.

Software Component: The P0 Element

The P0 element is implemented in the class P0. The implementation is
straightforward.

4.2.2 The Discontinuous Lagrangian Element

The discontinuous Lagrangian elements are similar to the continuous La-
grangian elements except for the fact that they are discontinuous. Hence,
locally on the polygon T , the basis functions are the same. The difference
is that discontinuous Lagrangian elements are not continuous between ele-
ments.

To exemplify this we consider the continuous and the discontinuous linear
Lagrangian elements in 2D. In Figure 4.1 we see that the triangles 1, . . . , 5
all share the common vertex V . For continuous Lagrangian elements, this
means that there will be only one degree of freedom associated with V . On
the other hand, for discontinuous Lagrangian elements, there will be one
degree of freedom associated with V per triangle. Hence, in the concrete
case depictured in Figure 4.1, there will be 5 degrees of freedom associated

59

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Figure 4.1: Some triangles with the common vertex V.

1 2

3

45

V

with V . Each degree of freedom is associated with a basis function which is
1 in V , 0 in the other vertices, and zero outside the triangle.

Software Component: The discontinuous Lagrangian element

The implementation of the discontinuous Lagrangian element is really easy
because this element is identical to the continuous Lagrangian element locally.
Hence, the basis functions on each element is the same. We only need to
modify the degrees of freedom.

The degrees of freedom for the discontinuous Lagrangian elements are such
that for each element, each degree of freedom is new. Hence, none of degrees
of freedom are shared among elements. It is fairly easy to implement this.
Assume that the polygons in the mesh or the elements in the finite element
space are numbered. Then the degree of freedom can be represented by both
the vertex xi and the element number e associated with the polygon Te,

Le
i (v) = v|Te

(xi),

where v|Te
means the restriction of v to the polygon Te. It is important to

take the restriction to Te since v is in general discontinuous in xi.

We have implemented the discontinuous Lagrangian element as a subclass

60

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

of the continuous Lagrangian element, with an additional integer parameter
element which is the element number. The class declaration is as follows,

class DiscontinuousLagrangeFE : public LagrangeFE {

int element;

public:

DiscontinuousLagrangeFE();

~DiscontinuousLagrangeFE() {}

virtual void set_order(int order);

virtual void set_element_number(int element);

virtual void set_polygon(Polygon& p);

virtual void compute_basis_functions();

virtual int nbf();

virtual GiNaC::ex N(int i);

virtual GiNaC::ex dof(int i);

};

Earlier, the degrees of freedom for continuous Lagrangian elements were rep-
resented as vertices or points (instead of linear forms), as is usual in finite ele-
ment codes. We do the same simplification here, and store the degrees of free-
dom as (xi, e), where xi is the vertex/point and e is the element number asso-
ciated with Te. This is implemented in the functions compute basis functions:

void DiscontinuousLagrangeFE:: compute_basis_functions() {

LagrangeFE:: compute_basis_functions();

for (int i=0; i< dofs.size(); i++) {

dofs[i] = lst(dofs[i], element);

}

}

The usage is standard (see disconlagrange ex.cpp),

Dof dof;

// create two triangles

61

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Triangle t1(lst(0,0), lst(1,0), lst(0,1));

Triangle t2(lst(1,1), lst(1,0), lst(0,1));

int order = 2;

DiscontinuousLagrangeFE fe;

fe.set_order(order);

fe.set_polygon(t1);

fe.set_element_number(1);

fe.compute_basis_functions();

usage(fe);

for (int i=0; i< fe.nbf(); i++) {

dof.insert_dof(1,i,fe.dof(i));

}

fe.set_polygon(t2);

fe.set_element_number(2);

fe.compute_basis_functions();

usage(fe);

for (int i=0; i< fe.nbf(); i++) {

dof.insert_dof(2,i,fe.dof(i));

}

// Print out the global degrees of freedom an their

// corresponding local degrees of freedom

vector<pair<int,int> > vec;

pair<int,int> index;

ex exdof;

for (int i=1; i<= dof.size(); i++) {

exdof = dof.glob_dof(i);

vec = dof.glob2loc(i);

cout <<"global dof " <<i<<" dof "<<exdof<<endl;

for (int j=0; j<vec.size(); j++) {

index = vec[j];

cout <<" element "<<index.first<<

" local dof "<<index.second<<endl;

}

62

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

}

When this program (disconlagrange) runs, it prints out 12 degrees of freedom
in contrast to 9 which it would be for continuous Lagrangian elements.

4.3 Finite Elements in H(div)

4.3.1 The Raviart-Thomas Element

The family of Raviart-Thomas elements [29] is popular when considering the
mixed formulation of elliptic problems. In this case the polynomial space is
not P

d
n, but

P
d
n + xPn. (4.1)

And the degrees of freedom are,
∫

ei

v · n pk ds, ∀pk ∈ Pk(ei), (4.2)

∫

T

v · pk−1 dx, ∀pk−1 ∈ P
d
k−1(T), (4.3)

where T is the polygon domain and ei is its edges (in 2D) or faces (in 3D).
Degrees of freedom which are integrals have been dealt with already for the
Crouizex-Raviart element in Section 4.1.2. Hence, there are mainly two new
concepts we need to deal with to implement this element. It is the polynomial
space, which is on the form (4.1), and the polynomial spaces on faces or edges
of the polygon, as in (4.2). Both concepts will be dealt with below.

Software Component: The Raviart-Thomas Element

Notice that for the previously defined Lagrangian and Crouizex-Raviart ele-
ments, the basis functions were scalar functions. The basis functions of the
Raviart-Thomas elements are vector functions, but still, thanks to the gen-
eral ex class, the Raviart-Thomas element class can be defined in the same
way as earlier. The class definition is:

63

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

class RaviartThomas : public StandardFE {

public:

RaviartThomas() {}

virtual ~RaviartThomas() {}

virtual void set_order(int order);

virtual void set_polygon(Polygon& p);

virtual void compute_basis_functions();

virtual int nbf();

virtual GiNaC::ex N(int i);

virtual GiNaC::ex dof(int i);

};

The Construction of the Raviart-Thomas Element

First, we described how to make the polynomial space (4.1). The polyno-
mial spaces, Pn(T) and P

d
n(T) on a polygonal domain, can be made by the

functions bernstein and bernsteinv, respectively. However, we can not just
add the spaces P

d
n(T) and xPn(T) together. Because, some of the basis func-

tions are the same in both space, while others are not. Consider for instance
P

d
1(T), which has the basis functions,

(0, 1)T , (1, 0)T , (x, 0)T , (0, x)T , (y, 0)T , (0, y)T

while xP1(K) has the following basis functions

(x, 0)T , (x2, 0)T , (xy)T , (0, y)T , (0, y2)T , (0, xy)T .

Hence (x, 0)T and (0, y)T are common.

The way we solve this problem is that we create the two spaces P
d
n(T) and

xPn(T) independently. We then have two polynomial spaces, each with two
independent sets of variables (or degrees of freedom). The variables associ-
ated with a basis in xPn(T) which is also a basis in P

d
n(T) is then removed.

This is done by removing all variables associated with basis functions that
have degree less than n − 1 in Pn from xPn(T). This is done as follows

64

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

in 2D (both 2D and 3D elements of arbitrary order are implemented in
RaviartThomas.cpp),

Triangle& triangle = (Triangle&)(*p);

lst equations;

lst variables;

ex polynom_space1 = bernstein(order-1, triangle, "a");

ex polynom1 = polynom_space1.op(0);

ex polynom1_vars = polynom_space1.op(1);

ex polynom1_basis = polynom_space1.op(2);

lst polynom_space2 = bernsteinv(order-1, triangle, "b");

ex polynom2 = polynom_space2.op(0).op(0);

ex polynom3 = polynom_space2.op(0).op(1);

lst pspace = lst(polynom2 + polynom1*x,

polynom3 + polynom1*y);

// remove multiple dofs

if (order >= 2) {

ex expanded_pol = expand(polynom1);

for (int c1=0; c1<= order-2;c1++) {

for (int c2=0; c2<= order-2;c2++) {

for (int c3=0; c3<= order-2;c3++) {

if (c1 + c2 + c3 <= order -2) {

ex eq = expanded_pol.coeff(x,c1)

.coeff(y,c2).coeff(z,c3);

if (eq != numeric(0)) {

equations.append(eq == 0);

}

}

}

}

}

}

65

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Second, we described how to implement the degrees of freedom (4.2)-(4.3).
The degrees of freedom associated with the edges,

∫

ei

v · n pk ds,∀pk ∈ Pk(ei),

are implemented as follows (Notice that the polynomial space on the edges of
the triangle is made by creating Bernstein polynomials in standard fashion).

ex bernstein_pol;

int counter = 0;

symbol t("t");

ex dofi;

// loop over all edges

for (int i=1; i<= 3; i++) {

Line line = triangle.line(i);

lst normal_vec = normal(triangle, i);

bernstein_pol = bernstein(order-1, line, istr("a",i));

ex basis_space = bernstein_pol.op(2);

ex pspace_n = inner(pspace, normal_vec);

// loop over all basis functions on current edge

ex basis;

for (int i=0; i< basis_space.nops(); i++) {

counter++;

basis = basis_space.op(i);

ex integrand = pspace_n*basis;

dofi = line.integrate(integrand);

dofs.insert(dofs.end(), dofi);

ex eq = dofi == numeric(0);

equations.append(eq);

}

}

The degrees of freedom associated with the whole triangle,
∫

T

v · pk−1 dx,∀pk−1 ∈ P
d
k−1(T),

66

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

is implemented as

// dofs related to the whole triangle

lst bernstein_polv;

if (order > 1) {

counter++;

bernstein_polv = bernsteinv(order-2, triangle, "a");

ex basis_space = bernstein_polv.op(2);

for (int i=0; i< basis_space.nops(); i++) {

lst basis = ex_to<lst>(basis_space.op(i));

ex integrand = inner(pspace, basis);

dofi = triangle.integrate(integrand);

dofs.insert(dofs.end(), dofi);

ex eq = dofi == numeric(0);

equations.append(eq);

}

}

In the above code we have formed the linear system,

Li(v) = 0

To compute the different vj we then produce different right hand sides cor-
responding to δij and solve the system. How this is done can be seen in the
RaviartThomas.cpp.

4.3.2 The Nedelec element of second kind

The Nedelec H(div) element introduced in [28], is very similar to the Raviart-
Thomas element, except that the polynomial space is P

d
n instead of P

d
n +xPn.

Hence, it is the R
3 analog of the Brezzi-Douglas-Marini element [21]. The

degrees of freedom in the Nedelec H(div) element are,
∫

f

(p · n)ds, ∀q ∈ Pk(f),

∫

K

(p · q)dx, ∀q ∈ Rk−1.

67

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Here

Rk = (P3
k−1) ⊕ S

k,

S
k = {p ∈ H

3
k| (r · p) = 0},

where r = (x, y, z).

Software Component: The Nedelec H(div) Element

The Nedelec H(div) element class definition is similar to the previous element
definitions.

class Nedelec2Hdiv : public StandardFE {

public:

Nedelec2Hdiv() {}

virtual ~Nedelec2Hdiv() {}

virtual void set_order(int order);

virtual void set_polygon(Polygon& p);

virtual void compute_basis_functions();

virtual int nbf();

virtual GiNaC::ex N(int i);

virtual GiNaC::ex dof(int i);

};

The Construction of the Nedelec H(div) Element

The construction of this element is very similar to the construction of the
Raviart–Thomas element. We will therefore not discuss this here.

68

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

4.4 Finite Elements in H(div,M)

The Arnold, Falk and Winther element [18] for mixed elasticity problems
in 3D with weak symmetry, has recently been added to SyFi. This element
consists of basis functions which take values in M, which is the space of 3×3
matrices. Each row is either a null row or the Nedelec H(div) element of
second kind as described in Section 4.3.2. The implementation is straight-
forward, since it is essentially a loop where each row is created as the basis
functions a Nedelec element. We therefore do not comment the implementa-
tion details here. The finite element is defined in ArnoldFalkWintherWeakSym.h.

4.5 A Finite Element in Both H(div) and H1

In [26] an element for both Darcy and Stokes types of flow was introduced.
The element is defined as:

V(T) = {v ∈ P
2
3 : div v ∈ P0, (v · ne)|e ∈ P1 ∀e ∈ E(T)},

where T is a given triangle, E(T) is the edges of T , ne is the normal vec-
tor on edge e, and Pk is the space of polynomials of degree k and P

d
k the

corresponding vector space. The degrees of freedom are,
∫

e

(v · n)τ k dτ, k = 0, 1, ∀e ∈ E(T),
∫

e

(v · t) dτ, ∀e ∈ E(T).

This element is implemented as follows (see also the PARA06 proceeding
../para06/proceeding/para proceeding.pdf). First we create the polynomial
space, which consist of cubic vector functions, P

2
3

Triangle triangle

ex V_space = bernsteinv(2, 3, triangle, "a");

ex V_polynomial = V_space.op(0);

ex V_variables = V_space.op(1);

69

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Here V space is the above mentioned list, V polynomial contains the polyno-
mial, and V variables contains the variables.

In the second step we first specify the constraint div v ∈ P0:

lst equations;

ex divV = div(V);

ex_ex_map b2c = pol2basisandcoeff(divV);

ex_ex_it iter;

// div constraints:

for (iter = b2c.begin(); iter != b2c.end(); iter++) {

ex basis = (*iter).first;

ex coeff= (*iter).second;

if (coeff != 0 && (basis.degree(x) > 0

|| basis.degree(y) > 0)) {

equations.append(coeff == 0);

}

}

Here, the divergence is computed with the div function. The divergence of a
function in P

2
3 is in P2. Hence, it is on the form b0+b1x+b2y+b3xy+b4x

2+b5y
2.

In the above code we find the coefficients bi, as expressions involving the
above mentioned variables ai and the corresponding polynomial basis, with
the function pol2basisandcoeff. Then we ensure that the only coefficient
which is not zero is b0.

The next constraints (v ·ne)|e ∈ P1 are implemented in much of the same way
as the divergence constraint. We create a loop over each edge e of the triangle
and multiply v with the normal ne. Then we substitute the expression for
the edge, i.e., in mathematical notation |e, into v · n. After substituting
the expression for these lines to get (v · ne)|e , we check that the remaining
polynomial is in P1 in the same way as we did above.

// constraints on edges:

for (int i=1; i<= 3; i++) {

Line line = triangle.line(i);

70

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

symbol s("s");

lst normal_vec = normal(triangle, i);

ex Vn = inner(V, normal_vec);

Vn = Vn.subs(line.repr(s).op(0))

.subs(line.repr(s).op(1));

b2c = pol2basisandcoeff(Vn,s);

for (iter = b2c.begin(); iter != b2c.end(); iter++){

ex basis = (*iter).first;

ex coeff= (*iter).second;

if (coeff != 0 && basis.degree(s) > 1)

{

equations.append(coeff == 0);

}

}

}

In the third step we specify the degrees of freedom. First, we specify the
equations coming from

∫

e
(v · n)τ k, k = 0, 1 on all edges. To do this we need

to create a loop over all edges, and on each edge we create the space of linear
Bernstein polynomials in barycentric coordinates on e, i.e., P1(e). Then we
create a loop over the basis functions τ k in P1(e) and compute the integral
∫

e
(v · n)τ k dτ .

// dofs related to the normal on the edges

for (int i=1; i<= 3; i++) {

Line line = triangle.line(i);

lst normal_vec = normal(triangle, i);

ex P1_space = bernstein(1, line, istr("a",i));

ex P1 = P1_space.op(2);

ex Vn = inner(V, normal_vec);

ex basis;

for (int j=0; j< P1.nops(); j++) {

basis = P1.op(j);

ex integrand = Vn*basis;

ex dofi = line.integrate(integrand);

71

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

dofs.insert(dofs.end(), lst(line.vertex(0),

line.vertex(1), j));

ex eq = dofi == numeric(0);

equations.append(eq);

}

}

Finally, the degrees of freedom
∫

e
(v·t)dτ , can be implemented in basically the

same fashion as the previously described degrees of freedom To summarize,
we have now specified 20 equations which is precisely the number of unknowns
in P

2
3. Hence, the space V(T) is uniquely defined, what remains is simply

to solve a linear system with 20 equations and 20 unknowns. The complete
source code is in Robust.cpp.

4.6 Finite Elements in H(curl)

4.6.1 The Nedelec Element

In electromagnetic applications, [27] the family of Nedelec elements are very
common. As was also the case with the Raviart-Thomas elements, P

n is not
the most convenient space to define the basis functions. Instead, we will use

P
d
n−1 + Ĥ

k, (4.4)

where
Ĥ

k = h ∈ H
d
k : h · x = 0

and H is the space of homogenous polynomials described in Section 3.3.3.
The degrees of freedom that defines the Nedelec elements are (in 2D),

∫

e

t · up dx, ∀p ∈ Pk−1(e), (4.5)
∫

T

u · p dx, ∀p ∈ P
n
k−2(T). (4.6)

72

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Software Component: The Nedelec Element

The Nedelec element class definition is similar to the previous element defi-
nitions.

class Nedelec : public StandardFE {

public:

Nedelec() {}

virtual ~Nedelec() {}

virtual void set_order(int order);

virtual void set_polygon(Polygon& p);

virtual void compute_basis_functions();

virtual int nbf();

virtual GiNaC::ex N(int i);

virtual GiNaC::ex dof(int i);

};

The Construction of the Nedelec Element

The Nedelec element of arbitrary order in both 2D and 3D is implemented
in Nedelec.cpp. Here we will for simplicity describe how the element is im-
plemented in 2D.

We first consider the polynomial space (4.4),

// create r

GiNaC::ex R_k = homogenous_polv(2,k+1, 2, "a");

GiNaC::ex R_k_x = R_k.op(0).op(0);

GiNaC::ex R_k_y = R_k.op(0).op(1);

// Equations that make sure that r*x = 0

GiNaC::ex rx = (R_k_x*x + R_k_y*y).expand();

ex_ex_map pol_map = pol2basisandcoeff(rx);

73

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

ex_ex_it iter;

for (iter = pol_map.begin();

iter != pol_map.end(); iter++) {

if ((*iter).second != 0) {

equations.append((*iter).second == 0);

removed_dofs++;

}

}

The degree of freedom associated with the edges (4.5) are implemented as,

GiNaC::ex dofi;

// dofs related to edges

for (int i=1; i<= 3; i++) {

Line line = triangle.line(i);

GiNaC::lst tangent_vec = tangent(triangle, i);

GiNaC::ex bernstein_pol = bernstein(order, line,

istr("a",i));

GiNaC::ex basis_space = bernstein_pol.op(2);

GiNaC::ex pspace_t = inner(pspace, tangent_vec);

GiNaC::ex basis;

for (int j=0; j< basis_space.nops(); j++) {

counter++;

basis = basis_space.op(j);

GiNaC::ex integrand = pspace_t*basis;

dofi = line.integrate(integrand);

dofs.insert(dofs.end(), dofi);

GiNaC::ex eq = dofi == GiNaC::numeric(0);

equations.append(eq);

}

}

The degree of freedom associated with whole triangle (4.6) are implemented

74

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

as,

// dofs related to the whole triangle

GiNaC::lst bernstein_polv;

if (order > 0) {

counter++;

bernstein_polv = bernsteinv(2,order-1, triangle, "a");

GiNaC::ex basis_space = bernstein_polv.op(2);

for (int i=0; i< basis_space.nops(); i++) {

GiNaC::lst basis = GiNaC::ex_to<GiNaC::lst> (

basis_space.op(i));

GiNaC::ex integrand = inner(pspace, basis);

dofi = triangle.integrate(integrand);

dofs.insert(dofs.end(), dofi);

GiNaC::ex eq = dofi == GiNaC::numeric(0);

equations.append(eq);

}

}

75

Chapter 5

Mixed Finite Elements

Mixed finite element methods typically refer to discretization methods for
systems of PDEs where different finite elements are used for the different
unknowns. For instance, in incompressible flow problems, one typically has
(at least) two unknowns, the velocity v and the pressure p. It is wellknown
that the velocity elements should have higher order than the pressure ele-
ments. The reasons for this have been extensively studied the last 30 years,
and we will not go into details on this here, see e.g., Brezzi and Fortin [20]
and Girault and Raviart[24].

What we will do here is to describe mixed finite elements from the program-
mers point of view. In this setting, we simply refer to mixed elements as
a collection of finite elements of different types on the same polygon. The
elements themselves and their implementation were discussed in the previous
section.

5.1 The Taylor–Hood and the P
d
n−Pn−2 Elements

The Taylor–Hood and the P
d
n − Pn−2 elements are mixed elements that are

popular for incompressible flow. The elements for both the velocity and the
pressure are of Lagrangian type, but have different order. The Taylor–Hood

77

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

element on a polygon T is,

v(T) ∈ P
d
2 and p(T) ∈ P1.

The Pn − Pn−2 element on a polygon T is,

v(T) ∈ P
d
n and p(T) ∈ Pn−2, n ≥ 2.

For n > 2 the pressure element is of Lagrangian type, while for n=2 the
pressure element is piecewise constant. These elements satisfy the Babuska-
Brezzi condition.

The Taylor–Hood elements can be created as follows, (see also taylorhood ex.cpp)

VectorLagrangeFE v_fe;

v_fe.set_order(2);

v_fe.set_size(2);

v_fe.set_polygon(domain);

v_fe.compute_basis_functions();

LagrangeFE p_fe;

p_fe.set_order(1);

p_fe.set_polygon(domain);

p_fe.compute_basis_functions();

The P
d
n − Pn−2 element can be made by changing the order of the elements

with the set function.

5.2 The Mixed Crouizex-Raviart Element

The mixed Crouizex-Raviart element is a nonconforming linear element for
the velocity and piecewise constant for the pressure. The Crouizex-Raviart
element was described in Section 4.1.2, while the P0 element was described
in Section 4.2.1.

These elements can be made as follows (see also crouzeixraviart ex2.cpp)

78

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

ReferenceTriangle domain;

VectorCrouzeixRaviart v_fe;

v_fe.set_size(2);

v_fe.set_polygon(domain);

v_fe.compute_basis_functions();

P0 p_fe;

p_fe.set_polygon(domain);

p_fe.compute_basis_functions();

5.3 The Mixed Raviart-Thomas Element

The velocity element is the Raviart-Thomas element described in Section
4.3.1. The pressure element is discontinuous polynomials of degree n. The
P0 element is described in Section 4.2.1, while the discontinuous Pn element
is described in Section 4.2.2.

The can be made as such (see also raviartthomas ex2):

int order = 3;

ReferenceTriangle triangle("t");

RaviartThomas vfe;

vfe.set_polygon(triangle);

vfe.set_order(order);

vfe.compute_basis_functions();

DiscontinuousLagrangeFE pfe;

pfe.set_polygon(triangle);

pfe.set_order(order);

pfe.compute_basis_functions();

79

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

for (int i=0; i< vfe.nbf(); i++)

cout <<"vfe.N("<<i<<")="<<vfe.N(i)<<endl;

for (int i=0; i< pfe.nbf(); i++)

cout <<"pfe.N("<<i<<")="<<pfe.N(i)<<endl;

5.4 The Mixed Arnold-Falk-Winther element

The mixed method of Arnold, Falk and Winther [18] for mixed elasticity
problems in 3D, with weakly imposed symmetry consists of three different
elements σh ∈ H(div, M), uh ∈ L2(V), ph ∈ L2(K), where M is the space
of 3 × 3 matrices, V is the space of vectors in R

3, and K is the space of
3 × 3 skew symmetric matrices. The σh element, described in Section 4.4, is
implemented as ArnoldFalkWintherWeakSymSigma. The uh element is a discon-
tinuous Galerkin vector element implemented as ArnoldFalkWintherWeakSymU.
Finally, the ph element is a discontinuous Galerkin skew symmetric matrix
element implemented as ArnoldFalkWintherWeakSymP. The implementation of
both ArnoldFalkWintherWeakSymU and ArnoldFalkWintherWeakSymP is straightfor-
ward since the code is essentially a wrap around the discontinuous Lagrangian
element described in Section 4.2.2 and we will not comment on the imple-
mentation details. The code can is in ArnoldFalkWintherWeakSym.cpp.

80

Chapter 6

Computing Element Matrices

Our next task is to compute element matrices. As earlier, everything will
be done symbolically. There are several reasons for doing the computations
symbolically:

• Everything is exact (No floating point precision issues)!

• Differentiation of the weak form with respect to the variables is possible
(Easy to compute the Jacobian for nonlinear PDEs).

• In case one uses integers and rational numbers as input (e.g., the ver-
tices of the polygon) one gets rational numbers as output. This enables
nice output.

• In case one uses symbols as input, one get symbols as output. Hence,
one might actually compute an abstract element matrix, where each en-
try in the matrix is a function of the vertices of the polygon, x0,x1, . . . ,xn,
which are symbols. We will consider this in more detail later.

• Every step can be checked against analytic computations. We can even,
as we will see, produce output in LATEX format, for easy reading.

• In Section 8 we generate C++ code from the exactly computed element
matrices.

81

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

6.1 A Poisson Problem

The Poisson problem is on the form,

−∆u = f, in Ω,

u = h, on ∂ΩE,
∂u

∂n
= g, on ∂ΩN ,

where ∂Ω = ∂ΩE ∪ ∂ΩN .

The weak form of the Poisson problem is (as we have already used): Find
u ∈ Vh such that

a(u, v) = b(v), ∀v ∈ V0.

where,

a(u, v) =

∫

Ω

∇u · ∇v dx,

f(v) =

∫

Ω

f v dx +

∫

ΓN

g v ds.

and Vk = v ∈ H1; v|∂ΩE
= k, for k = 0, h.

From this weak form we obtain the element matrix, see e.g., Brenner and
Scott [19], Ciarlet [22], or Langtangen [25],

Aij = a(Ni, Nj) =

∫

T

∇Nj · ∇Ni dx. (6.1)

The computation of (6.1) is implemented in the function compute Poisson element matrix

in ElementComputations.cpp,

void compute_Poisson_element_matrix(

FE& fe,

Dof& dof,

std::map<std::pair<int,int>, ex>& A)

{

std::pair<int,int> index;

82

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

// Insert the local degrees of freedom into the global Dof

for (int i=0; i< fe.nbf(); i++) {

dof.insert_dof(1,i,fe.dof(i));

}

Polygon& domain = fe.get_polygon();

// The term (grad u, grad v)

for (int i=0; i< fe.nbf(); i++) {

index.first = dof.glob_dof(fe.dof(i)); // fetch the i’th

// global dof

for (int j=0; j< fe.nbf(); j++) {

index.second = dof.glob_dof(fe.dof(j));// fetch the j’th

// global dof

ex nabla = inner(grad(fe.N(i)), // compute the

grad(fe.N(j))); // integrand

ex Aij = domain.integrate(nabla); // compute integral

A[index] += Aij; // add to matrix

}

}

}

Notice that in this example, both the degrees of freedom dof and the matrix
A are global.

This function can be used as follows (see fe ex4.cpp),

//matrix in terms of rational numbers

int order = 1;

Triangle triangle(lst(0,0), lst(1,0), lst(0,1));

LagrangeFE fe;

fe.set_order(order);

fe.set_polygon(triangle);

fe.compute_basis_functions();

Dof dof;

83

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

std::map<std::pair<int,int>, ex> A;

compute_Poisson_element_matrix(fe, dof, A);

In the above example, the vertices were integers, therefore the entries in the
matrix will be rational numbers. In the following example the vertices are
symbols.

//matrix in terms of symbols

symbol x0("x0"), x1("x1"), x2("x2");

symbol y0("y0"), y1("y1"), y2("y2");

Triangle triangle2(lst(x0,y0), lst(x1,y1), lst(x2,y2));

LagrangeFE fe2;

fe2.set_order(order);

fe2.set_polygon(triangle2);

fe2.compute_basis_functions();

Dof dof2;

std::map<std::pair<int,int>, ex> A2;

compute_Poisson_element_matrix(fe2, dof2, A2);

In this case A2 will contain expressions involving the vertices, (x0, y0), (x1, y1),
(x2, y2) (we used a triangle above).

The GiNaC library supports many different ways to print out the output.
In the example below, we turn on LATEX output with the command cout

<<latex; before we print out A2.

cout <<"LaTeX format on output "<<endl;

cout <<latex;

print(A2);

This gives the following expression (compiled by latex) for A[1, 1] (code for

84

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

the other entries are also produced, but these are not shown here).

A[1, 1] =
1

2

x2
0|(−x0 + x1)(y2 − y0) − (−x0 + x2)(y1 − y0)|
(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)

2

−y1y0|(−x0 + x1)(y2 − y0) − (−x0 + x2)(y1 − y0)|
(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)

2

+
1

2

y2
0|(−x0 + x1)(y2 − y0) − (−x0 + x2)(y1 − y0)|
(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)

2

−x0|(−x0 + x1)(y2 − y0) − (−x0 + x2)(y1 − y0)|x1

(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)
2

+
1

2

|(−x0 + x1)(y2 − y0) − (−x0 + x2)(y1 − y0)|x2
1

(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)
2

+
1

2

y2
1|(−x0 + x1)(y2 − y0) − (−x0 + x2)(y1 − y0)|
(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)

2

We can also print out C code,

cout <<"C code format on output "<<endl;

cout <<csrc;

print(A2);

Then the following code for A[1, 1] is produced,

A[1,1]=(x0*x0)/pow(-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0)

fabs((-x0+x1)(y2-y0)-(-x0+x2)*(y1-y0))/2.0

-y1/pow(-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0)*y0

fabs((-x0+x1)(y2-y0)-(-x0+x2)*(y1-y0))

+1.0/pow(-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0)*(y0*y0)

fabs((-x0+x1)(y2-y0)-(-x0+x2)*(y1-y0))/2.0

-x0/pow(-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0)

fabs((-x0+x1)(y2-y0)-(-x0+x2)*(y1-y0))*x1

+1.0/pow(-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0)

fabs((-x0+x1)(y2-y0)

-(-x0+x2)*(y1-y0))*(x1*x1)/2.0+(y1*y1)

85

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

/pow(-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0)

fabs((-x0+x1)(y2-y0)-(-x0+x2)*(y1-y0))/2.0

As is clear, these expressions can be rather large. GiNaC does not, by de-
fault, try to simplify these expressions. However, the above expressions is
composed of smaller expressions that appear many times and it is possi-
ble to simplify these expressions fairly easy. For instance, the expression
(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)

2 appears at least six times (and
this is only in A[1, 1]). Of course, this expression should be computed only
once. It seems that GiNaC has powerful tools for expression three traver-
sal that could enable generation of efficient code based on finding common
sub-expressions, but we have not exploited these tools to a great extent yet.
Some example code can be found in check visitor.cpp in the sandbox.

6.2 A Poisson Problem on Mixed Form

The Poisson problem can also be written on mixed form,

u −∇p = 0, in Ω,

∇ · u = f, in Ω,

u · n = g, on ∂ΩN ,

pn = hn on ∂ΩE.

Notice that essential boundary conditions for the Poisson problem on stan-
dard form become natural conditions for the Poisson problem on mixed form
and vice versa.

The weak form of the Poisson problem on mixed form is: Find u ∈ Vg, p ∈ Q
such that

a(u,v) + b(v, p) = G(v), ∀v ∈ V0, (6.2)

b(u, q) = F (q), ∀q ∈ Q, (6.3)

86

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

where

a(u,v) =

∫

Ω

u · v dx, (6.4)

b(u, q) =

∫

Ω

∇ · u q dx, (6.5)

F (q) =

∫

Ω

f q dx, (6.6)

G(v) =

∫

ΩE

hn · v ds (6.7)

Vk = v ∈ H(div) : v · n|∂ΩN
= k, k = 0, g.

H(div) = v ∈ L2 : ∇ · v ∈ L2,

Q =

{

L2
0 if ∂ΩN = ∂Ω,

L2 else.

The function compute mixed Poisson element matrix in ElementComputations.cpp

computes the element matrix for the mixed Poisson problem. We will not
comment or list the code here because it is very similar to the code described
in the next section. An example of use is in mxpoisson ex.cpp.

6.3 A Stokes Problem

The Stokes problem is on the form: Find u and p such that

−∆u + ∇p = f , in Ω,

∇ · u = 0, in Ω,

u = g, on ∂ΩE,
∂u

∂n
− pn = h, on ∂ΩN .

The weak form for the Stokes problem is: Find u ∈ Vg, p ∈ Q such that

a(u,v) + b(v, p) = F(v), ∀v ∈ V0,

b(u, q) = 0, ∀q ∈ Q,

87

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

where

a(u,v) =

∫

Ω

∇u : ∇v dx,

b(u, q) = −
∫

Ω

∇ · u q dx,

F(q) =

∫

Ω

f · v dx +

∫

ΩN

h · v ds,

Vk = v ∈ H1 : v|∂ΩE
= k, k = 0,g,

Q =

{

L2
0 if ∂ΩE = ∂Ω,

L2 else.

Notice that we have multiplied the equation for the mass conservation, ∇·u =
0, with −1 to obtain symmetry.

The function compute Stokes element matrix in ElementComputations implements
the computation of an element matrix for the Stokes problem. The code is
shown below.

void compute_Stokes_element_matrix(

FE& v_fe,

FE& p_fe,

Dof& dof,

std::map<std::pair<int,int>, ex>& A)

{

std::pair<int,int> index;

std::pair<int,int> index2;

Polygon& domain = v_fe.get_polygon();

// Insert the local degrees of freedom into the global Dof

for (int i=0; i< v_fe.nbf(); i++) {

dof.insert_dof(1,i,v_fe.dof(i));

}

for (int i=0; i< p_fe.nbf(); i++) {

dof.insert_dof(1,v_fe.nbf()+i,p_fe.dof(i));

}

// The term (grad u, grad v)

for (int i=0; i< v_fe.nbf(); i++) {

index.first = dof.glob_dof(v_fe.dof(i)); // fetch the dof for v_i

88

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

for (int j=0; j< v_fe.nbf(); j++) {

index.second = dof.glob_dof(v_fe.dof(j));// fetch the dof for v_j

GiNaC::ex nabla = inner(grad(v_fe.N(i)),

grad(v_fe.N(j)));// compute the integrand

GiNaC::ex Aij = domain.integrate(nabla); // compute the integral

A[index] += Aij; // add to global matrix

}

}

// The term (-div u, q)

for (int i=0; i< p_fe.nbf(); i++) {

index.first = dof.glob_dof(p_fe.dof(i)); // fetch the dof for p_i

for (int j=1; j< v_fe.nbf(); j++) {

index.second=dof.glob_dof(v_fe.dof(j)); // fetch the dof for v_j

ex divV= -p_fe.N(i)*div(v_fe.N(j)); // compute the integrand

ex Aij = domain.integrate(divV); // compute the integral

A[index] += Aij; // add to global matrix

// Do not need to compute the term (grad(p),v), since the system is

// symmetric. We simply set Aji = Aij

index2.first = index.second;

index2.second = index.first;

A[index2] -= Aij;

}

}

}

6.4 A Nonlinear Convection Diffusion Problem

Our next example concerns a nonlinear convection diffusion equation, where
we compute the element matrix for the Jacobian typically arising in a Newton
iteration. Let the PDE be,

(u · ∇)u − ∆u = f , in Ω, (6.8)

u = g, on ∂Ω. (6.9)

This can be stated on weak form as: Find u ∈ Vg such that

F(u,v) = 0, ∀v ∈ V0,

89

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

where

F(u,v) =

∫

Ω

(u · ∇u) · v dx +

∫

Ω

∇u : ∇v dx −
∫

Ω

f · v dx

and
Vk = v ∈ H1 : v|∂Ω = k, k = 0,g.

The Jacobian is obtained by letting u = û =
∑

j ujNj, v = Ni and differen-
tiating F with respect to uj,

Jij =
∂F (û,Ni)

∂uj

.

This is precisely the way it is done with SyFi, (see also nljacobian ex.cpp),

void compute_nlconvdiff_element_matrix(

FE& fe,

Dof& dof,

std::map<std::pair<int,int>, ex>& A)

{

std::pair<int,int> index;

Polygon& domain = fe.get_polygon();

// insert the local dofs into the global Dof object

for (int i=0; i< fe.nbf() ; i++) {

dof.insert_dof(1,i,fe.dof(i));

}

// create the local U field: U = sum_k u_k N_k

ex UU = matrix(2,1,lst(0,0));

ex ujs = symbolic_matrix(1,fe.nbf(), "u");

for (int k=0; k< fe.nbf(); k++) {

UU +=ujs.op(k)*fe.N(k); // U += u_k N_k

}

//Get U represented as a matrix

matrix U = ex_to<matrix>(UU.evalm());

for (int i=0; i< fe.nbf() ; i++) {

index.first = dof.glob_dof(fe.dof(i)); // fetch global dof

// First: the diffusion term in Fi

ex gradU = grad(U); // compute the gradient

90

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

ex Fi_diffusion = inner(gradU, // grad(U)*grad(Ni)

grad(fe.N(i)));

// Second: the convection term in Fi

ex Ut = U.transpose(); // get the transposed of U

ex UgradU = (Ut*gradU).evalm(); // compute U*grad(U)

ex Fi_convection = inner(UgradU, fe.N(i), // compute U*grad(U)*Ni

true);

// add together terms for convection and diffusion

ex Fi = Fi_convection + Fi_diffusion;

// Loop over all uj and differentiate Fi with respect

// to uj to get the Jacobian Jij

for (int j=0; j< fe.nbf() ; j++) {

index.second = dof.glob_dof(fe.dof(j)); // fetch global dof

symbol uj = ex_to<symbol>(ujs.op(j)); // cast uj to a symbol

ex Jij = Fi.diff(uj,1); // differentiate Fi wrt. uj

ex Aij = domain.integrate(Jij); // intergrate the Jacobian Jij

A[index] += Aij; // update the global matrix

}

}

}

Running the example nljacobian ex, which employs second order continuous
Lagrangian elements, yields the following output for A[1, 1],

A[1, 1] =
1

2
+

2

105
u3 +

2

105
u7 +

1

21
u2

13

420
u1 −

1

280
u11 (6.10)

− 1

21
u6 −

1

280
u5

1

140
u10 +

1

210
u9 −

1

140
u4. (6.11)

We have used GiNaC to generate the LATEXcode, as described on Page 84.

6.5 Expression Simplification

When generating expressions for complicated forms, and specially non-linear
forms, there is much room for optimization of the resulting expressions to
generate more efficient code. Generating optimal code for the computation

91

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

of a large symbolic expression is a very difficult problem, and the underlying
symbolic engine in GiNaC has limited support for this. However, GiNaC
has many of the building blocks to perform this optimization. We have im-
plemented a basic algorithm to simplify general expressions, which generates
helper variables for basic binary operations that are repeated. The algorithm
is very simple, and the resulting speedup (in the tests) ranges from a fac-
tor four to slightly negative. Obviously more work is needed in this area to
make this usable. The current expression simplifier can be tested by run-
ning ”make simplify && ./simplify v” under tests/. A basic code example is
shown below.

ExpressionSimplifier es;

es.add(e_symbol, e_expression);

es.add(f_symbol, f_expression);

es.simplify();

list< pair< symbol, ex > > & selist =

es.get_output().get_symex_list();

genCodeSymbols(cout, selist);

92

Chapter 7

Python Support

SyFi comes with Python support. The SyFi Python module is created by
using the tool SWIG (http://www.swig.org). One should also install the
Python interface to GiNaC called Swiginac (http://swiginac.berlios.de/).

The following code shows how Swiginac can be used (see also simple.py),

from swiginac import *

x = symbol("x")

y = symbol("y")

f = sin(x)

print "f = ", f

dfdx = diff(f,x)

print "dfdx = ", dfdx

SyFi classes and functions can be used in Python just as they are used in
C++. The following example shows how to compute the element matrix for
a Poisson problem using forth order Lagrangian elements,

from swiginac import *

93

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

from SyFi import *

p0 = [0,0,0]; p1 = [1,0,0]; p2 = [0,1,0]

triangle = Triangle(p0, p1, p2)

fe = LagrangeFE(triangle,4)

print fe.nbf()

for i in range(0,fe.nbf()):

for j in range(0,fe.nbf()):

integrand = inner(grad(fe.N(i)),grad(fe.N(j)))

Aij = triangle.integrate(integrand)

print "A(%d,%d)="%(i,j), Aij.eval()

Finally, we show a Python implementation of the Crouizex-Raviart element
(The C++ implementation can be found in the file CrouzeixRaviart.cpp). No-
tice that in this code we inherit the functions ex N(int i) and ex dof(int i)

and the exvectors Ns and dofs from the C++ class StandardFE. Hence, thanks
to SWIG, cross-language inheritance works, and we therefore only need to
implement the function compute basis functions. The following example is
implemented in crouzeixraviart.py.

from swiginac import *

from SyFi import *

initSyFi(3)

x = cvar.x; y = cvar.y; z = cvar.z # fetch some global variables

class CrouzeixRaviart:

"""

Python implementation of the Crouzeix-Raviart element.

The corresponding C++ implementation is in the

file CrouzeixRaviart.cpp.

"""

94

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

def __init__(self, polygon):

""" Constructor """

self.Ns = []

self.dofs = []

self.polygon = polygon

self.compute_basis_functions()

def compute_basis_functions(self):

"""

Compute the basis functions and degrees of freedom

and put them in Ns and dofs, respectively.

"""

polspace = bernstein(1,triangle,"a")

N = polspace[0]

variables = polspace[1]

for i in range(0,3):

line = triangle.line(i)

dofi = line.integrate(N)

self.dofs.append(dofi)

for i in range(0,3):

equations = []

for j in range(0,3):

equations.append(relational(self.dofs[j], dirac(i,j)))

sub = lsolve(equations, variables)

Ni = N.subs(sub)

self.Ns.append(Ni);

def N(self,i): return self.Ns[i]

def dof(self,i): return self.dofs[i]

def nbf(self): return len(self.Ns)

p0 = [0,0,0]; p1 = [1,0,0]; p2 = [0,1,0];

triangle = Triangle(p0, p1, p2)

95

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

fe = CrouzeixRaviart(triangle)

fe.compute_basis_functions()

print fe.nbf()

for i in range(0,fe.nbf()):

print "N(%d) = "%i, fe.N(i).eval().printc()

print "grad(N(%d)) = "%i, grad(fe.N(i)).eval().printc()

print "dof(%d) = "%i, fe.dof(i).eval().printc()

96

Chapter 8

Code Generation

In this section we will describe some matrix factories created for the PyCC
project [11], which have been made by using SyFi, GiNaC and Swiginac. At
present, we have written ca. 1500 lines of Python code using SyFi, Swig-
inac etc., which have generated roughly 60 000 lines of C++ code for the
computation (of various variants) of the mass matrix, the stiffness matrix,
the convection matrix and the divergence matrix using Lagrangian elements
of order 1-5 in 2D and 1-3 in 3D. Furthermore, the generated C++ code
is efficient, since everything except the geometry mapping can be computed
exactly. Notice also that although only Lagrangian elements have been used
so far, most of the Python code that generated the C++ code is completely
element independent. In addition to the generated C++ code we have also
written about 1500 lines of code which loops over the cells of a Dolfin mesh
[2] such that global matrices are made.

We have create two matrix factories. These are implemented in MatrixFactory

and MatrixFactory highorder. There are three differences between these two
factories. The first difference is that MatrixFactory employs the numbering of
degrees of freedom in the Dolfin mesh. Therefore, this MatrixFactory is limited
to linear Lagrangian elements. On the other hand, MatrixFactory highorder

uses DofT, described in Section 3.5, which works for general elements. The
second difference is that in MatrixFactory the integration is performed on a

97

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

global element with global basis functions, e.g., for the stiffness matrix,

Aij =

∫

T

∇Ni∇Njdx. (8.1)

In MatrixFactory highorder, the integration is performed on the reference ele-
ment with a geometry tensor G (the Jacobian of the geometry mapping) and
D = det(G),

Aij =

∫

T̂

(G−T∇N̂i) · (G−T∇N̂j)D dx. (8.2)

which is the typical way to do it in finite element codes. At present, we
favor (8.2) to (8.1) simply because it produces much smaller expressions and
therefore faster code. However, the large expressions in (8.1) typically in-
volve subexpressions repeated many times. Hence, it should be possible to
postprocess these expressions to create smaller expressions and faster code.
However, we have not done this yet. Finally, the third difference is that
MatrixFactory highorder works for the FastMatSparse matrix in PyCC, the Epe-
tra matrix in Trilinos [15] and for STL maps of type map<pair<int,int>,double>.

8.1 Basic Tools

We will illustrate the code generation by considering what was done for the
mass matrix in MatrixFactory highorder.

The entries of a mass matrix are:

Mkl =

∫

T

NkNl dx =

∫

T̂

N̂iN̂jD dx, ,

where T is the global polygon, Nk and Nl are the k’th and l’th global basis
functions, respectively, T̂ is the reference polygon, N̂i and N̂j are the i’th
and j’th basis functions on the reference polygon corresponding to k and l,
respectively, and D is the determinant of the Jacobian of the geometry map-
ping. The following code shows how this can be done (see also code gen.py):

def create_A_string_mass(fe):

A_str = " double A[%d][%d];\\n "%(fe.nbf(), fe.nbf())

98

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

domain = fe.get_polygon()

loop over all N(i)

for i in range(0,fe.nbf()):

loop over all N(j)

for j in range(0,fe.nbf()):

compute the integrand N(i)*N(j)

integrand = fe.N(i).eval()*fe.N(j).eval()

integrate over the domain

Aij = domain.integrate(toex(integrand))

generate C string and append the string to the rest

A_str += " A[%d][%d]=(%s)*D;\\n "%

(i,j,Aij.eval().evalf().printc())

The following output is produced, when using linear element on a 2D triangle
(see also matrix factory mass 2D.cc, which also contains code for higher order
Lagrangian elements),

double A[3][3];

A[0][0]=(8.3333333333333329e-02)*D;

A[0][1]=(4.1666666666666664e-02)*D;

A[0][2]=(4.1666666666666664e-02)*D;

A[1][0]=(4.1666666666666664e-02)*D;

A[1][1]=(8.3333333333333329e-02)*D;

A[1][2]=(4.1666666666666664e-02)*D;

A[2][0]=(4.1666666666666664e-02)*D;

A[2][1]=(4.1666666666666664e-02)*D;

A[2][2]=(8.3333333333333329e-02)*D;

Hence, this is the mass element matrix on the reference element multiplied
with D. In addition to computing the element matrix we also need to com-

99

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

puted the global degrees of freedom and generate a C function. We will not go
into details on this, but recommend the reader to have a look in code gen.py.

The complete function for the computation of the element matrix, in the case
of linear Lagrangian elements, and the insertion of the element matrix in the
global matrix can be found in matrix factory mass 2D.cc is:

void matrix_factory_mass_2D_order1 (map<pair<int,int>,double>& matrix,

DofT<Ptv,Ptv_is_less>& dof,

int element, double pp0[2], double pp1[2], double pp2[2]){

// geometry related stuff

double x0 = pp0[0]; double y0 = pp0[1];

double x1 = pp1[0]; double y1 = pp1[1];

double x2 = pp2[0]; double y2 = pp2[1];

double G00 = x1 - x0; double G01 = x2 - x0;

double G10 = y1 - y0; double G11 = y2 - y0;

double D = fabs(G00*G11-G01*G10);

// inserting local dofs in the global dof handler (dof)

int iidof[3];

double dof1[2];

dof1[0]=x0; dof1[1]=y0;

Ptv pdof1(2,dof1);

iidof[0] = dof.insert_dof(element,1,pdof1);

double dof2[2];

dof2[0]=G01+x0; dof2[1]=y0+G11;

Ptv pdof2(2,dof2);

iidof[1] = dof.insert_dof(element,2,pdof2);

double dof3[2];

dof3[0]=G00+x0; dof3[1]=G10+y0;

Ptv pdof3(2,dof3);

iidof[2] = dof.insert_dof(element,3,pdof3);

// compute the element matrix

double A[3][3];

100

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

A[0][0]=(8.3333333333333329e-02)*D;

A[0][1]=(4.1666666666666664e-02)*D;

A[0][2]=(4.1666666666666664e-02)*D;

A[1][0]=(4.1666666666666664e-02)*D;

A[1][1]=(8.3333333333333329e-02)*D;

A[1][2]=(4.1666666666666664e-02)*D;

A[2][0]=(4.1666666666666664e-02)*D;

A[2][1]=(4.1666666666666664e-02)*D;

A[2][2]=(8.3333333333333329e-02)*D;

// insert element matrix into global matrix

int nbf = 3;

pair<int,int> index;

for (int i=0; i< nbf; i++) {

index.first = iidof[i];

for (int j=0; j< nbf; j++) {

index.second = iidof[j];

matrix[index] += A[i][j];

}

}

}

Finally, we show how the above function is used in PyCC to compute the
mass matrix on a Dolfin mesh (see also MatrixFactory highorder.cpp)

void MapMatrixFactory:: computeMassMatrix(){

int e = -1;

if (mesh->numSpaceDim() == 2) {

double p0[2];

double p1[2];

double p2[2];

for (CellIterator cell(*mesh); !cell.end(); ++cell) {

e++;

// Obtain vertices from Dolfin mesh

Vertex& v0 = (*cell).vertex(0);

Vertex& v1 = (*cell).vertex(1);

101

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

Vertex& v2 = (*cell).vertex(2);

// Create double arrays with the data from the vertices

p0[0] = v0.coord().x; p0[1] = v0.coord().y;

p1[0] = v1.coord().x; p1[1] = v1.coord().y;

p2[0] = v2.coord().x; p2[1] = v2.coord().y;

switch(order1) {

case 1 :

matrix_factory_mass_2D_order1(*matrix,*idof,e,p0,p1,p2);

break;

case 2 :

matrix_factory_mass_2D_order2(*matrix,*idof,e,p0,p1,p2);

break;

case 3 :

matrix_factory_mass_2D_order3(*matrix,*idof,e,p0,p1,p2);

break;

case 4 :

matrix_factory_mass_2D_order4(*matrix,*idof,e,p0,p1,p2);

break;

case 5 :

matrix_factory_mass_2D_order5(*matrix,*idof,e,p0,p1,p2);

break;

}

}

}

}

Notice that this code works for Lagrangian elements of order 1-5 in 2D.

8.2 Debugging

Debugging finite element codes is often extremely hard, at least that is the
authors’ experience. This has been one of the reasons why we have chosen
to employ a symbolic math engine behind the curtain in the first place.

One of the advantages of SyFi is that one obtain explicit symbolic expressions
for all the basis functions (and its derivatives). Another good thing is that

102

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

one can create global finite elements, that is finite elements that are not
defined on reference geometries, and perform integration and differentiation
on their geometries. For instance, when we created the divergence matrix
factory we initially had a mysterious bug which took us several hours to find.
To locate the bug, we computed the divergence element matrix on a global
element with the vertices x0 = (0.2, 0.2), x1 = (0.4, 0.2), and x2 = (0.1, 0.3),
and compared it with the divergence element matrix on the reference element
with the corresponding geometry tensor. To do this, we wrote the following
code (see also main syfi.cpp):

// create global triangle

lst p0(0.2, 0.2);

lst p1(0.4, 0.2);

lst p2(0.1, 0.3);

Triangle triangle(p0,p1,p2);

// create vector element for v on the global triangle

VectorLagrangeFE v_fe;

v_fe.set_size(2);

v_fe.set_order(vorder);

v_fe.set_polygon(triangle);

v_fe.compute_basis_functions();

// create scalar element for p on the global triangle

LagrangeFE p_fe;

p_fe.set_order(1);

p_fe.set_polygon(triangle);

p_fe.compute_basis_functions();

// compute global element matrix

map<pair<int,int>, ex> A;

pair<int,int> index;

for (int i=0; i< p_fe.nbf(); i++) {

index.first = i;

for (int j=0; j< v_fe.nbf(); j++) {

index.second= j;

103

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

ex divV= p_fe.N(i)*div(v_fe.N(j));

ex Aij = triangle.integrate(divV);

A[index] = Aij;

}

}

The element matrix created by this code was then printed out and com-
pared with the element matrix computed by the matrix factory on the same
polygon (see dolfin main.cpp). By comparing each entry of the two matrices
we quickly found the (uninteresting) bug. Hence, in out experience it is ex-
tremely valuable to have the concrete basis functions etc. on global element,
and being able to work with them both with a pen and a paper and the
computer, to reveal what is going on.

104

Chapter 9

Using the SyFi Form Compiler

FIXME: This chapter has not been updated for the new rewritten UFL-based
SFC.

The SyFi Form Compiler – abbreviated SFC – is a Python module that
compiles a symbolic description of a finite element discretization into efficient
low level C++ code.

Other FEM packages can use the code generated by SFC by implementing
assembly of global finite element matrices through the C++ interface called
UFC [16] (Unified Form-assembly Code). Currently, the software packages
PyCC [11] and (Py)DOLFIN [2] support assembly of UFC forms, and FFC [?]
also supports generating UFC compliant code. We refer to the manuals of
DOLFIN and PyCC for more details about the global matrix/vector assem-
bly, and focus here on how to define a finite element discretization as input
to SFC.

We recommend reading the UFC paper [?] and introductory chapters of the
UFC manual [?] before proceeding, since much mathematical notation and
technical details are defined there.

105

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

9.1 Quickstart

To give a quick first impression of what SFC does, consider this code:

from sfc import *

Define elements

polygon = "tetrahedron"

P2 = FiniteElement("CG", polygon, 2)

T0 = TensorElement("DG", polygon, 0)

Define form arguments

u = TrialFunction(P2)

v = TestFunction(P2)

M = Function(T0)

Define integrand for a weighted stiffness matrix

def stiffness(v, u, M, itg):

GinvT = itg.GinvT()

Du = grad(u, GinvT)

Dv = grad(v, GinvT)

return inner(M*Du, Dv)

Collect the pieces as a form

a = CallbackForm(basisfunctions = [v, u],

coefficients = [M],

cell_integrals = [stiffness])

Generate UFC code, compile and import

a_compiled = compile_form(a)

Assemble the global system using PyDolfin

from dolfin import *

n = 10

mesh = UnitCube(n, n, n)

A = assemble(a_compiled, mesh) # FIXME: ensure working dolfin syntax here (== validate

The result of this code is that the variable a compiled contains a compiled

106

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

C++ object that implements ufc::form. This class interface provides func-
tionality to compute the element tensor for a particular problem. By passing
this object to the PyDOLFIN assembler together with a mesh, we assemble
a global sparse matrix as seen at the end of the code.

9.2 Defining Form Arguments

9.2.1 Defining Finite Elements

The first step of defining a discretized form is choosing which elements to
use. The basic syntax is:

fe = FiniteElement(family, domain, order)

fe = VectorElement(family, domain, order)

fe = TensorElement(family, domain, order)

The argument family can currently be one of

• ”CG” or ”Lagrange” (Continuous Galerkin)

• ”DG” (Discontinuous Galerkin)

• ”Bubble”

• ”CR” or ”Crouzeix-Raviart”

The argument domain can be one of

• ”triangle”

• ”tetrahedron”

• ”quadrilateral”

107

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

• ”hexahedron”

For vector and tensor elements, the default size is the geometric dimension
of the polygon.

Some typical examples of elements are shown below, which should be self-
explaining.

polygon = "tetrahedron"

P0 = FiniteElement("DG", polygon, 0)

P1 = FiniteElement("CG", polygon, 1)

V2 = VectorElement("CG", polygon, 2)

9.2.2 Defining Basisfunctions

One basisfunction is needed for each rank of the form, defined either using
BasisFunction or TestFunction and TrialFunction. The element can be
the same or different.

v = TestFunction(v_element)

u = TrialFunction(u_element)

equivalently

v = BasisFunction(v_element)

u = BasisFunction(u_element)

9.2.3 Defining Coefficients

Next we need to define each coefficient function as a member of a finite
element space. This is done by constructing a Function object with an
element as its first constructor argument and an optional name.

f = Function(element, name="f")

108

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

A shortcut exists for defining (piecewise) constants,

mu = Constant(name="mu")

which is equivalent to

element = FiniteElement("DG", polygon, 0)

mu = Function(element, name="mu")

Providing a name for a coefficient is optional, but may aid SFC in making
the generated code more readable and self-documented.

9.3 Defining a Form

There are a few different ways to go about defining the variational form
in SFC. Lets first summarize the main properties of a form in the UFC
framework. The form corresponding to a rank r element tensor has r basis
functions. It also has n coefficient functions. These are defined like explained
above, and passed as arguments when constructing a form representation
object FormRep.

A form can have any number of cell integrals, exterior facet integrals (bound-
ary integrals) or interior facet integrals (not implemented). Calling the func-
tion add cell integral on a FormRep object adds another integral and re-
turns its IntegralRep object. We will look at how to define each integral
below.

The following code shows what this looks like

define a form with two basisfunctions and one coefficient

a = FormRep(name = "my_form",

basisfunctions = [v, u],

109

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

coefficients = [c],

options = {})

add one cell integral to the form

citg = a.add_cell_integral()

add two boundary integrals to the form

bitg0 = a.add_exterior_facet_integral()

bitg1 = a.add_exterior_facet_integral()

All arguments to FormRep are optional with sensible default values.

9.4 Defining an Integral

An IntegralRep object collects all information concerning a single integral.
Most importantly, it provides a member function set A(index, integrand)

to set the integrand for each element tensor expression (for a way to avoid
manually looping over basis functions, see the section about CallbackForm).
Additionally, it can provide symbols and expressions for geometric quantities,
basis functions, and coefficients.

9.4.1 Argument expressions

The following functions are the most important ones to define a form by
manually iterating over basis functions and computing each integrand.

• itg.v basis(i) Returns a list with expressions for all basis functions
in finite element space i.

• itg.coefficient(i)

Returns an expression for coefficient i.

• itg.set A(index, integrand) Set integrand expression for a given
(multi-)index. (Integration and scaling with the geometry mapping is

110

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

performed by SFC.)

9.4.2 Geometric Quantities on Cells

• itg.vx(i)

Returns a symbol for the global coordinate of vertex i.

• itg.G()

Returns the affine mapping G from reference element to global element.

• itg.detG()

Returns the determinant of the affine mapping G. (You should usually
don’t need this, SFC scales the integral with this factor when integrat-
ing.)

• itg.GinvT()

Returns the transposed inverse of the affine mapping G, must be passed
to the differential operators div, grad and curl.

• itg.n()

Returns the outwards pointing normal vector on a boundary facet (ex-
terior facet integrals only).

9.4.3 Symbolic Language

When computing with symbolic expressions, all features of swiginac, which is
most features of GiNaC, are available through SFC. We recommend reading
the GiNaC manual for more details about its features. Some operators are
defined by SFC on top of the general symbolic library. These include (u, v
are vectors, A, B are matrices):

• ∇u = grad(u, GinvT)

• ∇ · u = div(u, GinvT)

• ∇ × u = curl(u, GinvT)

111

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

• AB =
∑

k AikBkj = A * B (regular matrix-matrix product)

• Av = A * v

• v · A = vT A = dot(v, A)

• A : B =
∑

i

∑

j AijBij = inner(A, B)

• u · v =
∑

k ukvk = dot(u, v)

• trace(A)

• transpose(A)

See the file symbolic utils.py for the definition of these operators.

9.4.4 Examples

Lets look at a more realistic example, for defining and compiling a linear
elasticity form.

def define_linear_elasticity(itg):

I = Id(itg.nsd)

GinvT = itg.GinvT()

get coefficients

lambd, mu = itg.coefficients()

for all trial functions u

for i, u in enumerate(itg.basisfunctions(1)):

Du = grad(u, GinvT)

DuT = Du.transpose()

E = (Du + DuT) / 2

sigma = lambd * Du * I + 2*mu*E

for all test functions v

for j, v in enumerate(itg.basisfunctions(1)):

Dv = grad(v, GinvT)

112

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

integrand = inner(sigma, Dv)

itg.set_A((i, j), integrand)

def define_linear_elasticity_traction(itg):

I = Id(itg.nsd)

GinvT = itg.GinvT()

get coefficients

lambd, mu = itg.coefficients()

for all trial functions u

for i, u in enumerate(itg.basisfunctions(1)):

Du = grad(u, GinvT)

DuT = Du.transpose()

E = (Du + DuT) / 2

sigma = lambd * Du * I + 2*mu*E

for all test functions v

for j, v in enumerate(itg.basisfunctions(1)):

Dv = grad(v, GinvT)

integrand = inner(sigma, Dv)

itg.set_A((i, j), integrand)

The code which ties these functions to a form is shown below.

from sfc import *

def define_linear_elasticity(itg):

...

def define_linear_elasticity_traction(itg):

...

polygon = "tetrahedron"

element = VectorElement("CG", polygon, 1)

113

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

v = TestFunction(element)

u = TrialFunction(element)

lambd = Constant(polygon)

mu = Constant(polygon)

a = Form(name = "elasticity",

basisfunctions = [v, u],

coefficients = [lambd, mu])

itg = userform.add_cell_integral()

define_linear_elasticity(itg)

itg = userform.add_exterior_facet_integral()

define_linear_elasticity_traction(itg)

a_compiled = compile_form(a)

FIXME: verify this code

9.5 Defining forms with callback functions

The loop over basis functions can be automated by using callback functions.
1 The callback function should compute and return the integrand for the
given set of basis functions and coefficients.

For each integrand in your form, you define a function taking one argument
for each form argument plus one. In other words, the function should have
r+n+1 arguments where r is the rank and n is the number of coefficients. The
last argument is an integral context object, of the same type as was returned
from FormRep.add * integral(). Your integrand function will be called
once for each entry in the element tensor, with the different basis functions
passed as the first r arguments. The next n arguments are expressions for
the coefficients.

1A callback function is a function that is passed as an argument to other code. It allows
a lower-level software layer to call a subroutine (or function) defined in a higher-level layer.

114

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

We will demonstrate how to do this for the three variational forms

c(; f) = ‖f‖1 =

∫

Ω

f · f + ∇f · ∇f dx, (9.1)

b(v; f) =

∫

Ω

f · v dx, (9.2)

a(v, u; w) =

∫

Ω

(w · ∇u) · v dx. (9.3)

Note the syntax a(v, u; M), where v is the test function, u is the trial function,
and w is a coefficient.

Callback functions for these integrands are

def H1(f, itg):

GinvT = itg.GinvT()

Df = grad(f, GinvT)

return inner(f, f) + inner(Df, Df)

def source(v, f, itg):

return inner(f, v)

def convection(v, u, w, itg):

GinvT = itg.GinvT()

Du = grad(u, GinvT)

return inner(inner(w, Du), v)

The first arguments of the callback function must be a number of basis func-
tions equal to the rank of the form. Thus for vector and matrix forms, the
first argument is the test function, and for matrix forms the second argu-
ment is the trial function. Scalar forms (f.ex. energy norms) require no basis
function arguments.

The next arguments should be one for each coefficient function (f and w in H1,
source and convection above. The last argument is the IntegralRep object,
which is briefly described elsewhere. Basically, through this object you can
get symbols representing geometry variables like the geometry mapping G−T

and boundary normal vector n.

115

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

The below code shows how to define and compile a form for each of the above
callback functions.

from sfc import *

P1 = FiniteElement("CG", "triangle", 1)

v = TestFunction(P1)

u = TrialFunction(P1)

f = Function(P1)

w = Function(P1)

c = CallbackForm(coefficients = [f],

cell_integrals = [H1])

cc = compile_form(c)

b = CallbackForm(basisfunctions = [v],

coefficients = [f],

cell_integrals = [source])

bc = compile_form(b)

a = CallbackForm(basisfunctions = [v, u],

coefficients = [w],

cell_integrals = [convection])

ac = compile_form(a)

We first define the linear finite element P1 and types of the arguments v,
u, f and w, and then tie it all together in a CallbackForm object. This
object is then sent to compile form which generates C++ code for the form
and elements, and returns a compiled C++ object which is a subclass of
ufc::form. This is accomplished by using Instant [10] which compiles a
Python extension module using SWIG [13] and g++ [17]. Also note that the
name of the form is automatically deduced from the name of the callback
function.

116

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

9.6 Computing the Jacobi matrix form from a

nonlinear vector form

Let F (v; u, . . .) be a rank 1 form which is nonlinear in the first coefficient u.
Then a matrix form representing the Jacobi of this form, J(v, u; . . .), can be
computed like

J = Jacobi(F)

9.7 Compiling a Form (Generating Code)

After defining a FormRep or CallbackForm in one of the ways described
above, this object can be passed to compile form which generates C++
code, compiles it as a Python extension module, imports it and returns an
instance of the newly generated ufc::form subclass.

a_compiled = compile_form(a)

This object can be used with PyDOLFIN to assemble the global sparse matrix
or global vector.

Alternatively, calling

write_ufc_code(a)

will generate code and write it to file in the directory generated code,

117

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

9.8 Options

Several options affect the way forms are compiled, the most important being
the choice of symbolic integration or quadrature and quadrature order if
applicable. (Many of the other options are likely to change a bit, and are
thus not explained here.)

options = {

"symbolic": False,

"quad_order": 4,

}

a = FormRep(..., options = options)

or

a = CallbackForm(..., options = options)

9.9 Compiling a function

To allow userdefined functions based on symbolic computations without sac-
rificing performance during assembly, sfc provides the function compile function(expression,

name). This works similar to compile form(...). An important use of this
function is during validation of a solver, as a powerful tool for the method of
manufactured solutions.

UFC defines a functor interface ufc::function, which can be passed to the
function evaluate dof(...) of the class ufc::finite element to evaluate the
degrees of freedom of the function in the local finite element space on a cell.
The return value of compile function is a compiled functor object of this type.

The argument name is used both for naming the generated functor class and
to name the Python module, so function names must be valid C++ vari-
able names. The expression can be a number of different types. A string is

118

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

assumed to be a valid C++ expression which is simply pasted into the gener-
ated code. A list of strings is treated as a vector function. Tensor functions
are the same as vector functions, just unpack the components into a list like
a matrix in C. Finally, the expression can be a swiginac expression, either
scalar or matrix. Below is an example Python code for compiling a function
from a swiginac matrix, and the resulting generated C++ code.

from sfc import compile_function, symbols, matrix, sin, cos

x, y = symbols(["x" "y"])

mat = matrix(2, 2, [x*x, cos(x*y), sin(y*x), y*y])

matfunc = compile_function(mat, "matfunc")

class matfunc: public ufc::function

{

public:

/// Evaluate the function at the point

/// x = (x[0], x[1], ...) in the cell

virtual void evaluate(double* values,

const double* x_,

const ufc::cell& c) const

{

const double x=x_[0], y=x_[1], z=x_[2];

values[0] = (x*x);

values[1] = cos(y*x);

values[2] = sin(y*x);

values[3] = (y*y);

}

};

119

Chapter 10

Behind the SyFi Form Compiler

FIXME: This chapter has not been updated for the new rewritten UFL-based
SFC.

This chapter gives an overview of the implementation of SFC, intended for
developers and technical users during debugging.

We strongly recommend reading the UFC paper (FIXME:REFERENCE)
and UFC manual (FIXME:REFERENCE) before proceeding, since much
mathematical notation, numerical concepts and technical details are defined
there.

10.1 Example of generated code

Let us first look at an example of UFC code that is generated by SFC.

Shown below is the function tabulate tensor which computes the element
tensor for a stiffness matrix with a scalar conductivity. The form uses scalar
linear elements for the test and trial functions v and u, and a scalar piecewise
constant element (P0) for the coefficient M .

FIXME: update code

121

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

void cell_integral_stiffness_with_M_LagrangeFE_1_2D::

tabulate_tensor(double* A, const double * const * w,

const ufc::cell& cell) const

{

// coordinates

double x0 = cell.coordinates[0][0];

double y0 = cell.coordinates[0][1];

double x1 = cell.coordinates[1][0];

double y1 = cell.coordinates[1][1];

double x2 = cell.coordinates[2][0];

double y2 = cell.coordinates[2][1];

// affine map

double G00 = x1 - x0;

double G01 = x2 - x0;

double G10 = y1 - y0;

double G11 = y2 - y0;

double detG_tmp = G00*G11-G01*G10;

double detG = fabs(detG_tmp);

double Ginv00 = G11 / detG_tmp;

double Ginv01 = -G10 / detG_tmp;

double Ginv10 = -G01 / detG_tmp;

double Ginv11 = G00 / detG_tmp;

A[3*0 + 0] = (5.e-01*(Ginv01*Ginv01)*w[0][0]

+5.e-01*(Ginv00*Ginv00)*w[0][0]

+Ginv11*Ginv01*w[0][0]

+5.e-01*(Ginv11*Ginv11)*w[0][0]

+Ginv10*Ginv00*w[0][0]

+5.e-01*(Ginv10*Ginv10)*w[0][0])*detG;

A[3*0 + 1] = (-5.e-01*(Ginv01*Ginv01)*w[0][0]

-5.e-01*(Ginv00*Ginv00)*w[0][0]

-5.e-01*Ginv11*Ginv01*w[0][0]

-5.e-01*Ginv10*Ginv00*w[0][0])*detG;

122

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

A[3*0 + 2] = (-5.e-01*Ginv11*Ginv01*w[0][0]

-5.e-01*(Ginv11*Ginv11)*w[0][0]

-5.e-01*Ginv10*Ginv00*w[0][0]

-5.e-01*(Ginv10*Ginv10)*w[0][0])*detG;

A[3*1 + 0] = (-5.e-01*(Ginv01*Ginv01)*w[0][0]

-5.e-01*(Ginv00*Ginv00)*w[0][0]

-5.e-01*Ginv11*Ginv01*w[0][0]

-5.e-01*Ginv10*Ginv00*w[0][0])*detG;

A[3*1 + 1] = (5.e-01*(Ginv01*Ginv01)*w[0][0]

+5.e-01*(Ginv00*Ginv00)*w[0][0])*detG;

A[3*1 + 2] = (5.e-01*Ginv11*Ginv01*w[0][0]

+5.e-01*Ginv10*Ginv00*w[0][0])*detG;

A[3*2 + 0] = (-5.e-01*Ginv11*Ginv01*w[0][0]

-5.e-01*(Ginv11*Ginv11)*w[0][0]

-5.e-01*Ginv10*Ginv00*w[0][0]

-5.e-01*(Ginv10*Ginv10)*w[0][0])*detG;

A[3*2 + 1] = (5.e-01*Ginv11*Ginv01*w[0][0]

+5.e-01*Ginv10*Ginv00*w[0][0])*detG;

A[3*2 + 2] = (5.e-01*(Ginv11*Ginv11)*w[0][0]

+5.e-01*(Ginv10*Ginv10)*w[0][0])*detG;

}

(The expressions for A had to be edited manually to fit on the page.)

10.2 Data Flow During Code Generation

A summary of the data flow in a user application can be written as

• The user defines FiniteElement objects representing all finite element
spaces.

• The user defines one BasisFunction object for each axis of the element
tensor.

• The user defines one Function object for each coefficient.

123

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

• The user defines a FormRep object with one list of BasisFunction ob-
jects and one list of Function objects.

• The user populates the FormRep object with IntegralRep objects.

• The user fills in each IntegralRep object with integrand expressions.

• The user passes the FormRep object to compile form or another code
generation function.

If CallbackForm is used, the apparent data flow in the user code will be
slightly different from the above, but a quick look at the CallbackForm code
in SFC (it’s quite short) should remove any confusion.

10.3 Code generation design

Here we describe the overall design of the code generation software, intended
for developers who wish to extend SFC, and perhaps usable for advanced
users during debugging.

The C++ interface is fixed, defined by the header file ufc.h from UFC. UFC
also contains a utility Python module with format strings for generating UFC
compliant code. An example of a format string is seen below.

cell_integral_implementation = """\

/// Constructor

%(classname)s::%(classname)s() : ufc::cell_integral()

{

%(constructor)s

}

/// Destructor

%(classname)s::~%(classname)s()

{

%(destructor)s

124

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

}

/// Tabulate the tensor for the contribution from a local cell

void %(classname)s::tabulate_tensor(double* A,

const double * const * w,

const ufc::cell& c) const

{

%(tabulate_tensor)s

}

"""

Each UFC class (form, dof map, finite element, cell integral, exterior facet integral,
interior facet integral) has separate format strings. In SFC, each UFC
class is mirrored by a subclass of the class CodeGenerator (FormCG, DofMapCG,
FiniteElementCG, CellIntegralCG, etc). These classes have only one func-
tion in common, called generate code(). This function should return a tuple
(header code, cpp code) when called, and each implementation of it follows
the same pattern. Each function in the UFC interface has a format string
variable (like “%(tabulate tensor)s”) with the same name. For each for-
mat string variable foo there is a corresponding function gen foo() in the
CodeGenerator subclass. The result from each of these functions gen * are
code for function bodies (without the function signature), which is inserted
in a dictionary that is combined with the appropriate format string from
UFC. The three ufc::* integral classes have the same single function tabu-
late tensor, which is reflected by a common base class IntegralCG for their
code generators.

class IntegralCG(CodeGenerator):

def __init__(self, classname, header_format, implementation_format):

self.classname = classname

self.header_format = header_format

self.implementation_format = implementation_format

def generate_code(self):

generate code components for integral class

vars = {

125

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

’classname’ : self.classname,

’constructor’ : indent(self.gen_constructor()),

’destructor’ : indent(self.gen_destructor()),

’members’ : indent(self.gen_members()),

’tabulate_tensor’ : indent(self.gen_tabulate_tensor())

}

combine generated code components with

code templates defined in the ufc module

hcode = self.header_format % vars

cppcode = self.gen_members_implementation()

cppcode += self.implementation_format % vars

return hcode, cppcode

The actual code generation for the most complicated function, tabulate tensor,
is “outsourced” to a set of functions gen tabulate tensor * found in gen tabulate tensor.py.
Among the functions defined here are

• gen tabulate tensor cell symbolic

• gen tabulate tensor cell quadrature

• gen tabulate tensor exterior facet symbolic

• gen tabulate tensor exterior facet quadrature

• gen tabulate tensor interior facet symbolic

• gen tabulate tensor interior facet quadrature

Each of these functions take a single argument itgrep, which is an Integral
object describing a single integral from a user form.

class CellIntegralCG(IntegralCG):

def __init__(self, itgrep):

126

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

IntegralCG.__init__(self, classname = itgrep.classname,

header_format = ufc.cell_integral_header,

implementation_format = ufc.cell_integral_implementation)

self.itgrep = itgrep

def gen_tabulate_tensor(self):

if self.itgrep.symbolic:

code = gen_tabulate_tensor_cell_symbolic(self.itgrep)

else:

code = gen_tabulate_tensor_cell_quadrature(self.itgrep)

return code

10.4 Code Formatting Utilities

To help ensure a consistent formatting of the generated code, it has proved
useful to have some simple code generation utilities. These utilities assist
in making the code readable, and provide some basic consistency checks to
ensure that the generated code is valid.

At the most basic level, if you want to indent a multiline string, use the
function indent(text). This ensures a consistent indentation throughout
the generated code, and removes.

One of the central utilities is the CodeFormatter class, which handles new-
lines, braces and indentation for code with block constructs like if, while,
do, switch and class. Errors in calls to the CodeFormatter will often be de-
tected during code generation, reducing the chance of C++ compiler errors
on generated code which can be cumbersome to debug. It also does consis-
tency checks for nested block constructs if you use its functions begin * and
end *. An example of its basic usage follows:

#!/usr/bin/env python

from sfc.CodeFormatter import CodeFormatter

fictional choice of integers

127

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

facet_dofs = [(2, 0, 1), (5, 3, 4), (6, 7, 8)]

code = CodeFormatter()

code.begin_switch("facet")

for i, dofs in enumerate(facet_dofs):

code.begin_case(i)

for j, d in enumerate(dofs):

code += "dofs[%d] = %d;" % (j, d)

code.end_case()

code += "default:"

code.indent()

code += ’throw std::runtime_error("Invalid facet number.");’

code.outdent()

code.end_switch()

print str(code)

which produces the following nicely formatted C++ code

switch(facet)

{

case 0:

dofs[0] = 2;

dofs[1] = 0;

dofs[2] = 1;

break;

case 1:

dofs[0] = 5;

dofs[1] = 3;

dofs[2] = 4;

break;

case 2:

dofs[0] = 6;

dofs[1] = 7;

dofs[2] = 8;

break;

default:

128

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

throw std::runtime_error("Invalid facet number.");

}

During its filetime, the object code keeps track of intentation level and the
current scope (on a stack). If you haven’t closed all blocks when calling
str(code), an exception is raised.

Another useful set of helper functions can generate code for declarations,
definitions, assignments and additions for a list of symbol,expression pairs,
or tokens. A token list is a list of (symbol, expression) tuples. The functions
are:

• gen token declarations(tokens) → double s;

• gen token definitions(tokens) → double s = e;

• gen token assigments(tokens) → s = e;

• gen token additions(tokens) → s += e;

129

Bibliography

[1] Analysa, 2006. http://people.cs.uchicago.edu/r̃idg/al/aa.html .

[2] Dolfin, 2006. http://www.fenics.org/dolfin.

[3] Dsel, 2006. http://www.hpc2n.umu.se/para06/papers/paper 147.pdf.

[4] Fenics, 2006. http://www.fenics.org.

[5] Ffc, 2006. http://www.fenics.org/ffc/.

[6] Fiat, 2006. http://www.fenics.org/fiat/.

[7] Freefem, 2006. http://www.freefem.org/ff++/index.htm.

[8] Getdp, 2006. http://www.geuz.org/getdp/.

[9] GiNaC, 2006. http://www.ginac.de.

[10] Instant, 2006. http://pyinstant.sf.net.

[11] PyCC, 2006. http://home.simula.no/ skavhaug/heart simulations.html.

[12] Sundance, 2006. http://software.sandia.gov/sundance/.

[13] SWIG, 2006. http://www.swig.org/.

[14] Swiginac, 2006. http://swiginac.berlios.de/.

[15] Trilinos, 2006. http://software.sandia.gov/trilinos.

[16] UFC, 2006. http://www.fenics.org/ufc.

131

SyFi User Manual Martin Alnæs and Kent-Andre Mardal

[17] GCC, 2007. http://gcc.gnu.org/.

[18] D. N. Arnold, R. S. Falk, and R. Winther. Mixed finite element methods
for linear elasticity with weakly imposed symmetry. Submitted to Math.
Comp., 2006.

[19] S. C. Brenner and L. R. Scott. The mathematical theory of finite element
methods. Springer Verlag, 1994.

[20] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods.
Springer Verlag, 1991.

[21] Franco Brezzi, Jim Douglas, Jr., and L. D. Marini. Two families of
mixed finite elements for second order elliptic problems. 47(2):217–235,
September 1985.

[22] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. SIAM,
2002.

[23] M. Crouzeix and P.A. Raviart. Conforming and non–conforming finite
element methods for solving the stationary stokes equations. RAIRO
Anal. Numér., 7:33–76, 1973.

[24] V. Girault and P.-A. Raviart. Finite element methods for Navier–Stokes
equations. Springer Verlag, 1986.

[25] H. P. Langtangen. Computational Partial Differential Equations - Nu-
merical Methods and Diffpack Programming. Textbooks in Computa-
tional Science and Engineering. Springer, 2nd edition, 2003.

[26] K.A. Mardal, X.-C. Tai, and R. Winther. A robust finite element method
for darcy–stokes flow. SIAM J. Numer. Anal., 40:1605–1631, 2002.

[27] J.-C. Nédélec. Mixed finite elements in R3. 35(3):315–341, October
1980.

[28] J.-C. Nédélec. A new family of mixed finite elements in R3. 50(1):57–81,
November 1986.

[29] P. A. Raviart and J. M. Thomas. A mixed finite element method for 2-
order elliptic problems. Matematical Aspects of Finite Element Methods,
1977.

132

	Introduction
	Software
	License
	Installation
	Python Support
	Examples and Tests
	GiNaC Tools
	The symbol factory
	Symbols for spatial variables

	A Finite Element
	Basic Concepts
	Polygons
	Line
	Triangle
	Tetrahedron
	Rectangle
	Box

	Polynomial Spaces
	Bernstein Polynomials
	Legendre Polynomials
	Homogeneous Polynomials

	A Finite Element
	Degrees of Freedom

	Some Examples of Finite Elements
	Finite Elements in H1
	The Lagrangian Element
	The Crouizex-Raviart Element

	Finite Elements in L2
	The P0 Element
	The Discontinuous Lagrangian Element

	Finite Elements in H(div)
	The Raviart-Thomas Element
	The Nedelec element of second kind

	Finite Elements in H(div,M)
	A Finite Element in Both H(div) and H1
	Finite Elements in H(curl)
	The Nedelec Element

	Mixed Finite Elements
	The Taylor--Hood and the ¶dn-¶n-2 Elements
	The Mixed Crouizex-Raviart Element
	The Mixed Raviart-Thomas Element
	The Mixed Arnold-Falk-Winther element

	Computing Element Matrices
	A Poisson Problem
	A Poisson Problem on Mixed Form
	A Stokes Problem
	A Nonlinear Convection Diffusion Problem
	Expression Simplification

	Python Support
	Code Generation
	Basic Tools
	Debugging

	Using the SyFi Form Compiler
	Quickstart
	Defining Form Arguments
	Defining Finite Elements
	Defining Basisfunctions
	Defining Coefficients

	Defining a Form
	Defining an Integral
	Argument expressions
	Geometric Quantities on Cells
	Symbolic Language
	Examples

	Defining forms with callback functions
	Computing the Jacobi matrix form from a nonlinear vector form
	Compiling a Form (Generating Code)
	Options
	Compiling a function

	Behind the SyFi Form Compiler
	Example of generated code
	Data Flow During Code Generation
	Code generation design
	Code Formatting Utilities

