
The PyUtilib Component Architecture

William E. Hart∗ John Siirola†

May 18, 2018

Abstract

We describe the PyUtilib Component Architecture (PCA), which has been sub-
stantially revised for the PyUtilib 4.0 release. The design of PCA is inspired by the
Trac component architecture, and it supports advanced features like non-singleton
components, namespaces and caching of component interactions. The PCA includes
an independent, self-contained framework core that can be easily integrated into other
applications, as well as a variety of extension packages with commonly used compo-
nents.

∗Sandia National Laboratories, Discrete Math and Complex Systems Department, PO Box 5800, Albu-
querque, NM 87185; wehart@sandia.gov
†Sandia National Laboratories, Exploratory Simulation Technologies Department, PO Box 5800, Albu-

querque, NM 87185; jdsiiro@sandia.gov

1

Contents

1 Introduction 3

2 The PyUtilib Component Architecture 4
2.1 PCA Definitions . 4

2.1.1 Relationship to the Trac Component System 5
2.2 A Simple Example . 6

3 PCA Classes 8
3.1 Interfaces and Extension Points . 8
3.2 Plugins . 11
3.3 Environments . 12
3.4 Global Component Data . 14

4 PCA Extensions 14
4.1 Component Loaders . 14
4.2 Registering Executables . 15
4.3 Temporary Files . 16
4.4 Options and Configuration Files . 16

4.4.1 Configuration Files . 17
4.4.2 Declaring Options . 18
4.4.3 Options Types . 19
4.4.4 Using Options in Services . 20
4.4.5 Managed Services . 20

4.5 Other Extensions . 20

5 Discussion 21

2

1 Introduction

Component Based Software Engineering (CBSE) has become one of the leading approaches to
developing complex extensible software systems [4]. CBSE implementations frequently rely
on concepts from both object oriented programming (OOP) and event-driven programming.
Unlike traditional OOP where classes and polymorphism are used to manage related data-
driven objects, CBSE leverages classes and polymorphism to represent related functional
interfaces and programmatic services. The central idea underlying CBSE is equivalence
of service; that is, the separation of the declaration of component interfaces from their
implementation. This allows for more flexible software design that encourages modularity
of component interface and definitions. Furthermore, this segregation allows for explicit
management of the interactions among components. We can begin to imagine software
components as commodities that can be integrated into applications in a much more flexible
and dynamic manner.

A variety of mature, general purpose environments exist for defining and managing com-
ponents (e.g., the CORBA Component Model [3] and the Common Component Architec-
ture [1]). Although Python interfaces have been developed for some of these environments,
a variety of native Python component environments have also been developed, including
Zope [13], Envisage [2], Trac [11], yapsy [12] and SprinklesPy [9].

This report describes the PyUtilib Component Architecture (PCA), which was signifi-
cantly revised in the PyUtilib 4.0 release. The PCA is derived from the Trac component
framework [11], and it is included in the PyUtilib software package [8]. Our development of
the PCA was motivated by our experience with a variety of scientific computing applications,
which led to the following requirements for PCA:

• Independent, self-contained framework core: Many component architectures are em-
bedded in larger software frameworks (e.g. Zope, Trac), which make it difficult to
extract and use just the software packages related to the component architecture.

• Non-Singleton components : The computational science applications that motivate
PCA require both singleton components (which have a single unique instance) and
non-singleton components (which have many unique instances).

• Namespaces : Using components in large software projects requires management across
multiple libraries. Namespaces are needed to effectively manage components in these
complex software projects.

• Caching : Components need to support applications where component interfaces are
called thousands or millions of times. Thus, caching of this interaction is needed to
minimize the overhead of the component architecture.

• Loading from EGGs : Support for loading EGG files is invaluable in dynamic applica-
tions. Further, loading components from EGG files provides another level of modularity
to the management of software applications.

3

A key guiding principle behind our development of the PCA is a focus on simplicity and
flexibility. Our goal is to minimize the burden placed on application developers for both
adding the PCA to a project and maintaining PCA-based applications. One consequence is
that the PCA explicitly does not provide some advanced capabilities, like interface validation
and interface adaption, that are available in more heavyweight component architectures such
as Zope or Envisage.

The remainder of this manuscript is divided into the following sections. Section 2 provides
a tutorial introduction to the use of PCA classes, and Section 3 provides a detailed description
of PCA capabilities. Section 4 describes PyUtilib extension packages that support specific
components based on the PCA. This section motivates these packages and provides examples
of their use. Section 5 discusses how the PCA has fundamentally influenced the design of
the Pyomo software project.

2 The PyUtilib Component Architecture

The PyUtilib Component Architecture (PCA) is included in the PyUtilib software pack-
age [8]. It inspired by the Trac plugin framework [11], and it was initially motivated by
our need for an independent, self-contained plugin framework for scientific computing appli-
cations. The core of the PCA is provided through a small set of classes within PyUtilib’s
pyutilib.component.core package. This section provides a tutorial introduction of the
PCA as well as a detailed description of the PCA classes and their functionality.

2.1 PCA Definitions

There are different notions of software components [5], so we begin by providing some defi-
nitions. The relationships among these terms is illustrated in Figure 1. A plugin is a class
that implements a set of related methods in the context of an application. Thus, a plugin
can be described as a component definition.

An interface class defines a type that a plugin uses to register its capabilities. A plugin
class includes declarations that denote that it implements one-or-more interfaces. An inter-
face is defined by the methods and data that are used. However, the PCA does not enforce
this interface or support interface conversions (see Zope [13] and Envisage [2] for examples
of plugin frameworks that support this functionality).

A service is an instance of a plugin class that is registered globally with its interfaces.
We say that a plugin class instance is active if it is registered, and a plugin class instance is
only treated as a service if it is active. A service can be an instance of either a singleton or
non-singleton plugin. There is exactly one service for a singleton plugin (and that service is
instantiated automatically), whereas there can be multiple services of non-singleton plugins.
Singleton plugins are active by default, whereas non-singleton plugins are conditionally active
depending how the plugin interface is declared.

A software application or a component can declare extension points that other compo-
nents can plug in to. An extension point is defined with respect to a specific interface class.

4

Plugin

implements(interface1)

Interface

interface1

Interface
Service

myServiceA

Service

Interface

interface2

General Class

ExtensionPoint(interface1)

Service

myServiceB

SingletonPlugin
ExtensionPoint(interface2)

SingletonPlugin

implements(interface1)

implements(interface2)

Figure 1: An illustration of how classes within the PCA relate to one another. Interface
classes are independent declarations of APIs. Plugin classes can declare that they implement
an Interface’s API, and extension points declare that they require a specific Interface API.
Both singleton and non-singleton plugins can be used, but services for non-singleton plugins
are explicitly constructed.

Thus, a service that supports an interface plugs into an extension point for that interface.
In this way, extension points provide a generic mechanism for applications to employ the
functionality provided by other services.

This mechanisms supports a flexible, modular programming paradigm that enables soft-
ware applications to be extended in a dynamic manner. The PCA includes a global compo-
nent registry and a framework for automating the execution of plugin services. All plugins
and interfaces automatically register themselves with the registry. This registry then acts as
a broker, dynamically providing extension points with the appropriate matching services at
run time. Thus, an application developer can define extension points without knowing how
they will be implemented, and plugin developers can register extensions without needing
to know the details of how – or where – they are employed. This capability facilitates the
dynamic registration and application of components within large software systems.

2.1.1 Relationship to the Trac Component System

The general design of PCA is inspired by the plugin system included in Trac [11]. The
PCA generalizes the Trac component architecture by supporting namespace management
of plugins, non-singleton plugins, support for non-active plugin instances and caching of
interface interactions. For those familiar with Trac, the following classes roughly correspond
with each other:

5

Trac Class Name PyUtilib Class Name
Interface Interface
ExtensionPoint ExtensionPoint
Component SingletonPlugin
ComponentManager PluginEnvironment

The PluginEnvironment class is used to manage plugins, but unlike Trac this class does not
need to be explicitly constructed.

2.2 A Simple Example

Figure 2 provides a simple example that is adapted from the description of the Trac compo-
nent architecture [10]. This example illustrates the three main steps to setting up a plugin:

1. Defining an interface

2. Declaring extension points

3. Defining classes that implement the interface.

This example begins by defining ITaskObserver, a subclass of Interface. Although it is
not required to define methods in an interface, these declarations provide documentation
for plugin developers. We then declare a TaskList that manages a dictionary of tasks and
descriptions. The TaskList creates an ITaskObserver extension point, and when a task
is added to the task list, it calls all services that implement the ITaskObserver interface.
Finally, we define a TaskPrinter as a singleton plugin. The TaskPrinter implements the
ITaskObserver interface, and when called prints the task name and description. As the
TaskPrinter is a singleton plugin, the PCA automatically instantiates and registers a single
TaskPrinter service.

Assuming the module in Figure 2 is saved as task.py, then the following Python script
illustrates how this plugin is used:

from task import ∗

Construct a TaskLis t o b j e c t and then add s e v e r a l t a s k s .
t a s k l i s t = TaskList ()
t a s k l i s t . add (’Make c o f f e e ’ , ’Need to make some c o f f e e ’)
t a s k l i s t . add (’Bug t r i a g e ’ , ’ Double−check a l l i s s u e s ’)

This script generates the following output:

Task : Make c o f f e e
Need to make some c o f f e e

Task : Bug t r i a g e
Double−check a l l i s s u e s

6

A simple example t ha t manages a t a s k l i s t . An obse rve r
i n t e r f a c e adds ac t i on s t ha t occur when a ta s k i s added .
from pyu t i l i b . component . core import ∗

An i n t e r f a c e c l a s s t ha t d e f i n e s the API f o r p l u g i n s t ha t
observe when a ta s k i s added .
class ITaskObserver (I n t e r f a c e) :

def task added (s e l f , name , d e s c r i p t i o n) :
””” Ca l l ed when a ta s k i s added . ”””

The ta s k l i s t app l i c a t i on , which d e c l a r e s an ex t ens ion po in t
fo r ob s e r v e r s . Observers are n o t i f i e d when a new ta s k
i s added to the t a s k l i s t .
class TaskList (object) :

ob s e rve r s = Extens ionPoint (ITaskObserver)

def i n i t (s e l f) :
”””The TaskLis t cons t ruc tor , which i n i t i a l i z e s the l i s t ”””
s e l f . t a sk s = {}

def add (s e l f , name , d e s c r i p t i o n) :
”””Add a task , and n o t i f y the ob s e r v e r s ”””
s e l f . t a sk s [name] = de s c r i p t i o n
for obse rve r in s e l f . ob s e rve r s :

obse rve r . task added (name , d e s c r i p t i o n)

A p lug in t ha t p r i n t s in format ion about t a s k s when they
are added .
class TaskPrinter (S ing l e tonP lug in) :

implements (ITaskObserver)

def task added (s e l f , name , d e s c r i p t i o n) :
print ’ Task : ’ , name
print ’ ’ , d e s c r i p t i o n

Figure 2: A simple example of PCA components.

7

3 PCA Classes

The PCA consists of the following core classes that are defined in the pyutilib.component.core
package:

Interface Subclasses of this class declare plugin interfaces that are registered in the PCA.

ExtensionPoint A class used to declare extension points, which can access services with a
particular interface.

Plugin Subclasses of this class declare plugins, which can be used to implement interfaces
within the PCA.

SingletonPlugin Subclasses of this class declare singleton plugins, for which a single service
is constructed.

PluginEnvironment A class that maintains the registries for interfaces, extension points,
plugins and services.

PluginGlobals A class that maintains global data concerning the set of environments that
are currently being used.

PluginError The exception class that is raised when errors arise in the PCA.

The following sections provide a detailed description of how these classes are used in the
PCA.

3.1 Interfaces and Extension Points

A subclass of the Interface class is used to declare extension points in an application. The
ExtensionPoint class is used to declare an extension point and to retrieve information about
the plugins that implement the specified interface. For example, the following is a minimal
declaration of an interface and extension point:

class IMyInter face (I n t e r f a c e) :
”””An i n t e r f a c e s u b c l a s s ”””

ep = Extens ionPoint (IMyInter face)

Note that the IMyInterface class is not required to define the API of the interface. The PCA
does not enforce checking of API conformance for plugins, and hence any declaration in the
IMyInterface class would be ignored. Additionally, note that an instance of IMyInterface
is not created; the IMyInterface class is simply used to declare a type that is used to index
related plugins.

An instance of ExtensionPoint can be used to iterate through all extensions, or to search
for an extension that matches a particular keyword. For example, the following code iterates
through all extensions and applies the pprint method:

8

for s e r v i c e in ep :
s e r v i c e . ppr int ()

If you wish to know the number of services that are registered with an extension point, you
can call the standard len function:

print len (ep)

Several other methods can be used to more carefully select services from an extension
point. The extensions method returns a Python set object that contains the services:

#
This loop i t e r a t e s over a l l s e r v i c e s , j u s t the same
as when an the i t e r a t o r method i s used (see above) .
#
for s e r v i c e in ep . ex t en s i on s () :

s e r v i c e . ppr int ()

The Python call method provides a convenient shorthand for this same function. Thus,
the following is equivalent:

for s e r v i c e in ep () :
s e r v i c e . ppr int ()

These methods have two optional arguments that control the selection of services. The
all keyword indicates whether the set returned by extensions includes all disabled services.

#
This loop i t e r a t e s over a l l s e r v i c e s , i n c l u d in g
the ’ d i s a b l e d ’ s e r v i c e s .
#
for s e r v i c e in ep . ex t en s i on s (a l l=True) :

s e r v i c e . ppr int ()

It is convenient to explicitly support enabling and disabling services in many applications,
though services are enabled by default. Disabled services remain in the registry, but by
default they are not included in the set returned by an extension point.

The PCA can also support named services, which requires that the services have a name

attribute. Service names are not required to be unique. For example, when multiple instances
of a non-singleton plugin are created, then these services can be accessed as follows:

9

#
A simple p l u g in t ha t implements the IMyInter face i n t e r f a c e
#
class MyPlugin (Plugin) :

implements (IMyInter face)

def i n i t (s e l f) :
s e l f . name=”myname”

#
Another s imple p l u g in t ha t implements the IMyInter face i n t e r f a c e
#
class MyOtherPlugin (Plugin) :

implements (IMyInter face)

def i n i t (s e l f) :
s e l f . name=”myothername”

#
Construc t ing s e r v i c e s
#
s e r v i c e 1 = MyPlugin ()
s e r v i c e 2 = MyPlugin ()
s e r v i c e 3 = MyOtherPlugin ()

#
A func t i on t ha t i t e r a t e s over a l l IMyInter face s e r v i c e s , and
re turns the MyPlugin in s t ance s (which are s e r v i c e 1 and s e r v i c e 2) .
#
def g e t s e r v i c e s () :

ep = Extens ionPoint (IMyInter face)
return ep (”myname”)

In some applications, there is a one-to-one correspondence between service names and their
instances. In this context, a simpler syntax is to use the service method:

class MySingletonPlugin (S ing l e tonP lug in) :
implements (IMyInter face)

def i n i t (s e l f) :
s e l f . name=”mysingletonname”

ep = Extens ionPoint (IMyInter face)
ep . s e r v i c e (”mysingletonname”) . ppr int ()

The service method raises a PluginError if there is more than one service with a given
name. Note, however, that this method returns None if no service has been registered with
the specified name.

10

Note that an integer cannot be used to select a service from an extension point. Services
are not registered in an indexable array, so this option is disallowed.

3.2 Plugins

PCA plugins are subclasses of either the Plugin or SingletonPlugin classes. Subclasses of
Plugin need to be explicitly constructed, but otherwise they do not need to be registered;
simply constructing a subclass of Plugin invokes the registration of that instance. Simi-
larly, simply declaring a subclass of SingletonPlugin invokes both the construction and
registration of this component.

PCA plugins are registered with different interfaces using the implements function, which
is a static method of Plugin. Note that a plugin can be registered with more than one
interface. Further, a service can be applied to different extension points independently, but
it can maintain state information that impacts its use across different extension points.

The default behavior of the PCA is to ignore the declarations in an interface class, but
the implements function includes an inherit keyword can be used to define a plugin that
inherits interface methods. For example:

class IMyInter face (I n t e r f a c e) :
def print (s e l f) :

print ”This i s the d e f au l t p r i n t method”

def add (s e l f , x) :
return x+2

class MyPlugin (Plugin) :
implements (IMyInter face , i n h e r i t=True)

def add (s e l f , x) :
return x+3

In this example, the MyPlugin class implements the IMyInterface interface. Since the
inherit keyword is True, the MyPlugin class inherits the print method. Thus, MyPlugin
has a complete implementation of the IMyInterface interface.

Although this behavior is generally useful, the API for PCA intentionally does not make
interface inheritance the default behavior. When inheritance is used, a developer can get
into trouble if they mistype the name of a plugin method. When this occurs, the interface
method is used, without any notification to the user. This could easily lead to erroneous
plugin behavior that is quite difficult to track down.

When Plugin classes are instantiated or SingletonPlugin classes are declared, the re-
sulting class service is registered in global PCA data (see below). The Plugin class includes
several methods for controlling this registration. The disable and enable methods provide
a simple mechanism for controlling whether a service is returned with associated extension
points. These methods clear the PCA caches that are associated with these extension points

11

to ensure that the extension points are correctly setup. The activate and deactivate

methods respectively add and remove the service from the global environment. This has a
similar effect as enable and disable, except that after deactivation the service is no longer
associated with the PCA global data, while after disable the service is still registered but
flagged as not active.

3.3 Environments

The PluginEnvironment class defines namespaces that contain component services and in-
terfaces. These namespaces provide a mechanism for organizing component services in an
extensible manner. Applications can define new namespaces that contain their services with-
out worrying about conflicts with services defined in other Python libraries.

A global registry of environments is maintained by the PluginGlobals class. This reg-
istry is a stack of environments, and the top of this stack defines the current environment.
When an interface is declared, its namespace is the name of the current environment. For
example:

#
Declare an i n t e r f a c e in the curren t environment
#
class I n t e r f a c e 1 (I n t e r f a c e) :

pass

#
Set the current environment to ’ new environ ’
#
Plug inGloba l s . push env (” new environ ”)

#
Declare an i n t e r f a c e in the ’ new environ ’ environment
#

class I n t e r f a c e 2 (I n t e r f a c e) :
pass

#
Go back to the o r i g i n a l environment
#
Plug inGloba l s . pop env ()

Component services are automatically registered in namespaces in two ways. First, for each
interface that the service implements, the service is registered in the namespace in which
the interface was declared. Second, a service is registered in the namespace in which its
corresponding plugin class is declared.

For example, consider the code in Figure 3. When Plugin1 is instantiated, this service
is registered in the following environments:

12

#
Declare In t e r f a c e 1 in namespace env1
#
Plug inGloba l s . push env (”env1”)

class I n t e r f a c e 1 (I n t e r f a c e) :
pass

#
Declare In t e r f a c e 2 in namespace env2
#
Plug inGloba l s . push env (”env2”)

class I n t e r f a c e 2 (I n t e r f a c e) :
pass

Plug inGloba l s . pop env ()

#
Declare Plugin1 in namespace env3
#
Plug inGloba l s . push env (”env3”)

class Plugin1 (Plugin) :

implements (I n t e r f a c e 1)
implements (I n t e r f a c e 2)
implements (In t e r f a c e1 , ”env4”)

Plug inGloba l s . pop env ()

Figure 3: Illustration of how plugin declarations are related to component environments.

env1 for I n t e r f a c e 1
env2 for I n t e r f a c e 2
env4 for I n t e r f a c e 1
env3

The last registration is the default, since a service is always registered in the environment
where its plugin class is declared. Note that env4 namespace is declared explicitly in this
example.

13

3.4 Global Component Data

Global component data in PCA is managed in the PluginGlobals class. This class contains
a variety of static methods that are used to access this data:

default env This method returns the default environment, which is constructed when the
PCA is loaded.

env This method returns the current environment if no argument is specified. Otherwise,
it returns the specified environment.

push env,pop env These methods respectively push a new environment onto the environ-
ment stack and pop the current environment from the stack.

services This method returns the component services in the current environment (or the
named environment if one is specified).

singleton services This method returns the singleton component services in the current
environment (or the named environment if one is specified).

load services Load services using IPluginLoader extension points (see Section 4.1).

pprint This method provides a text summary of the registered interfaces, plugins and ser-
vices.

clear This method empties the environment stack and defines a new default environment.
This setup then bootstraps the configuration of the pyutilib.component.core envi-
ronment. Note that this does not clear the component registry; in practice that may
not make sense since it is not easy to reload modules in Python.

4 PCA Extensions

In addition to the core component framework, PCA includes implementations for a variety of
components that support commonly used functionality. These extensions of PCA are avail-
able in PyUtilib packages separate from the PCA core. This emphasizes the modularity of
the PCA, and it illustrates how to define PCA components that are automatically registered
as part of an application. The following sections briefly describe these PCA extensions.

4.1 Component Loaders

PCA components can be loaded from either Python modules or Python eggs. This capability
supports the runtime extension of the PCA, which has proven very powerful in frameworks
like Trac. Component services for loading are defined in the pyutilib.component.loader

package. The core PCA defines extension points that use these services, which can be applied
as follows:

14

import sys
import os
env = os . env i ron [”PATH”]
Plug inGloba l s . l o a d s e r v i c e s (path=env . s p l i t (os . sep))

In this example, the user’s PATH environment is used to define the list of directories that are
searched for Python modules and eggs.

The load services takes two other optional arguments that control how components
are loaded. The name re argument can be used to define a regular expression that filters the
files in the directories that are searched. The following shows how to specify that services
starting with my are loaded:

Plug inGloba l s . l o a d s e r v i c e s (name re=”my.∗ ”)

By default, when services are loaded they are disabled. This facilitates the management
of services in complex applications using configuration files (see below). The auto disable

flag can be used to automatically activate services:

Plug inGloba l s . l o a d s e r v i c e s (au t o d i s ab l e=False)

4.2 Registering Executables

The pyutilib.component.executable package defines the ExternalExecutable plugin,
which is used to define services that provide information about external executables. Services
declare the executable name and user documentation, and then service methods indicate
whether the executable is enabled (i.e. whether it is found, and the path of the executable:

s e r v i c e = ExternalExecutable (name=’ l s ’ ,
doc=’A u t i l i t y to l i s t f i l e in Unix opera t ing systems ’)

s e r v i c e . enabled ()
Returns True i f the e x e cu t a b l e i s found on the user path .

s e r v i c e . get path ()
Returns a s t r i n g t ha t d e f i n e s the path to t h i s execu tab l e ,
or None i f s e r v i c e i s d i s a b l e d .

The registration process is simplified with the pyutilib.services package, which includes
the register executable function:

15

import pyu t i l i b . s e r v i c e s

p yu t i l i b . s e r v i c e s . r e g i s t e r e x e c u t a b l e (’ z ip ’)

This function searches the user’s PATH environment for the zip executable (or zip.exe on
Windows machines).

A developer can use the registered executable function to the access the absolute path
of a registered executable. If the executable is not found in the user’s PATH, then this returns
None. Also, if no executable is specified, then this function returns a list of all registered
executables.

4.3 Temporary Files

The pyutilib.component.config packages provides a services for managing temporary
files. The TempfileManager object is a component service whose methods can be used
to create and cleanup temporary files; for convenience, this object is accessible from the
pyutilib.services package.

The main method in this service is create tempfile, which can create a temporary file
with a specified suffix and prefix in a specified directory:

import pyu t i l i b . s e r v i c e s

p yu t i l i b . s e r v i c e s . c r e a t e t emp f i l e (p r e f i x=’ myf i l e ’ ,
s u f f i x=’ . txt ’ , dir=’ /home/ jdoe ’)

By default, this service creates unique filenames. However, if the sequential files method
is called, then the body of the temporary files will be an integer that is incremented every
time a temporary file is created. Although these filenames may not be unique, this sequential
naming scheme may make it easier to diagnose errors in a complex application.

This service keeps track of the temporary files that it creates. This allows an application
developer to avoid this bookkeeping, and instead rely on this service to delete temporary
files with the clear tempfiles method. Furthermore, a developer can explicitly declare a
file as temporary using the add tempfile method, thereby allowing this service to delete it.

4.4 Options and Configuration Files

The pyutilib.component.config package defines interfaces and plugins for managing ser-
vice options. The Configuration service is used to manage the global configuration of all
services. This class coordinates with Option services. Plugins can declare options with
the declare option method, which registers these options with the Configuration service.
This service reads and writes options to configuration files (using Python’s ConfigParser

package).

16

This package also declares the ManagedPlugin and ManagedSingletonPlugin classes,
which are plugin base classes that include options that can be used to enable or disable
services using the Configuration service.

4.4.1 Configuration Files

A PCA configuration file consists of a list of sections. Each section is lead by a [section]

header, and a section contains a list of name = value entries. For example, the following
configuration file consists of two sections with four option values:

COMMENT
[globals]
a = 1
b = /dev/ nu l l
c = 1 ,2 ,3
[a . b]
zz = 4 .5

PCA plugin classes declare component options with the declare option method, which is
defined in pyutilib.component.doc. These options can be initialized with a configuration
file. For example, the following plugin declares four options.

class PluginWithOptions (Plugin) :
def i n i t (s e l f) :

d e c l a r e op t i on (”a”)
d e c l a r e op t i on (”b”)
d e c l a r e op t i on (”c”)
d e c l a r e op t i on (” zz ” , s e c t i o n=’ a . b ’)

The default configuration section for an option is [globals], but the option declaration can
specification the section name. For example, the configuration file described above can be
used to initialize the PluginWithOptions plugin.

The Configuration class manages loading and storing configuration data for the options
that are registered by PCA services. This class defines the following methods:

clear Clear the configuration data.

load Load configuration data from a file.

pprint Print a simple summary of the configuration data.

save Write configuration data to a file.

sections Return a list of the sections that have been loaded.

17

summarize Summarize the options that have been registered with the PCA.

Once data is loaded with the load method, the sections method can be used to provide a
list of the sections that were loaded. The Python contains method can also be used to
check if a section was loaded:

from pyu t i l i b . component . c on f i g import ∗

c on f i g = Conf igurat ion ()

Load con f i g u r a t i on data
c on f i g . load (’ c on f i g . i n i ’)

Check i f the ’ g l o b a l s ’ s e c t i on was loaded
i f ’ g l o b a l s ’ in c on f i g :

print ”The ’ g l o b a l s ’ s e c t i o n was loaded ”

Get the ’ g l o b a l s ’ s e c t i on
s e c t i o n = con f i g [’ g l o b a l s ’]

The Python getitem method is used at the end of this example to get the data for the
’globals’ section. Section data consists of a dictionary that maps option names to value
strings. Note that the Configuration class automatically loads this data into the corre-
sponding options that have been registered with the PCA.

4.4.2 Declaring Options

The declare option creates an Option object that is a data member in a plugin. The
standard syntax for this function is to specify the option name, which is used to define an
attribute in the plugin with the same name:

class TmpPlugin (S ing l e tonP lug in) :

d e c l a r e op t i on (’ x ’)

The local name keyword can be used to specify a different name for this attribute within
the plugin. For example, consider:

class TmpPlugin (S ing l e tonP lug in) :

d e c l a r e op t i on (’ x ’ , loca l name=’y ’)

18

In this example, the option is declared with name x in the PCA registry, but it has attribute
name y within this plugin. The default keyword defines the default value of an option,
and the doc option specifies a document string that describes the option; this information is
used by the Configuration class when printing option summary information.

As noted earlier, the section keyword can be used to specify the section in configura-
tion data that this option is expected. The section re keyword supports a more generic
mechanism. If the section re is specified with a regular expression, then this option will
be initialized from any section that matches this regular expression. If sections match and
contain data for this option, then the last section specified in the configuration data will be
used to initialize this option.

Finally, the cls keyword specifies the option type. Option types are described in the
next section.

4.4.3 Options Types

The default option type is Option. These options treat option values as strings, even when
they could be interpreted as numeric values. The BoolOption, IntOption and FloatOption

types respectively interpret option values as booleans, integers and floating point values.
The OptionError exception is raised if the option value is not the appropriate value.

The FileOption type interprets the option value into a path. A relative path is converted
to an absolute path using the path for the configuration file. Thus, a user can load file path
data from any directory but specify the file data relative to the path of the application
configuration. In addition, this option type also supports a directory keyword that can be
used to specify how relative paths are resolved. The ExecutableOption type is an extension
of FileOption that confirms that the file can be executed. If the file name does not include
path information, then PCA will search for the executable using the user’s PATH environment
before initializing this option.

The DictOption type supports an interface to all options in a section. For example,
consider:

class TmpPlugin (Plugin) :

opt i ons = DictOption (s e c t i o n=”bar”)

The options object will be populated by all data in the bar section. For example, if the
names a and b are defined in this section, then they can be referenced as options.a and
options.b. Similarly, data can be inserted into the bar section by simply specifying the
value of attributes of this object:

opt ions . c = 2

19

4.4.4 Using Options in Services

It is convenient for singleton plugins to declare options as part of the class definition:

class Plugin1 (S ing l e tonP lug in) :

d e c l a r e op t i on (”x”)

This type of declaration makes sense since there is a single instance of the class Plugin1. For
non-singleton plugins, this type of declaration would make the same option data available
to all instances of the plugin. To declare different options for different non-singleton plugin
instances, it suffices to execute declare option within the plugin constructor:

class Plugin2 (Plugin) :

def i n i t (s e l f , s e c) :
d e c l a r e op t i on (”x” , s e c t i o n=sec)

Note that this example allows the Plugin2 services to distinguish the configuration of these
different x options by specifying different sections in the configuration file. Although this is
not required, this is often desirable in practice.

4.4.5 Managed Services

The PCA supports explicit management of services using the configuration management
technology described in this section. The ManagedPlugin and ManagedSingletonPlugin

classes include an enable option that controls whether their corresponding services are
activated. When services are loaded from EGG files and modules, they are disabled by
default. The Services section of a configuration file can be used to activate these plugins:

[S e r v i c e s]
p lug in1 = True
p lug in3 = True

This allows an application administrator to install a variety number of application services
that a user selectively enables.

4.5 Other Extensions

The following extension packages include plugins and applications interfaces for PCA applica-
tions. These extension packages are less mature, and consequently they are not documented
in detail right now.

20

pyutilib.component.config This extension package defines a plugin that manages log-
ging of PCA actions.

pyutilib.component.app This package defines a simple application class that can be used
as the basis of a component-based application. This application class provides support for
managing configuration from a configuration file, and for managing logging activity.

5 Discussion

A major driver for the development of the PCA is the Pyomo optimization software [7].
Pyomo defines a variety of component interfaces that can be used to customized and extend
Pyomo’s management of optimization solvers. This includes interfaces for components that

• write files that define an optimization problem

• convert files into a format that is compatible with an optimizer

• execute an optimizer

• read files that define optimizer results and execution status

The PCA has had a fundamental impact on the design of Pyomo because it supports a new
software design for optimization frameworks.

The typical object oriented approach for optimization software is to use classes and class
inheritance. For example, the OPT++ [6] optimization software library defines base classes
with different characteristics (e.g. differentiability), and a concrete optimization solver is
instantiated as a subclass of an appropriate base class. In this context, the base class can
be viewed as defining the interface for the solvers that inherit from it.

Pyomo components leverage the PCA to separate the declaration of component inter-
faces from their implementation. For example, the interface to optimization solvers are
again declared with a class. However, solver plugins are not required to be subclasses of the
interface class. Instead, they are simply required to provide the same interface methods.
Consequently, Pyomo can be extended and configured in a modular manner that is qualita-
tively different from other optimization frameworks. The PCA allows Pyomo to dynamically
construct optimization strategies and combine independently-developed modeling, reformu-
lation, preprocessing, and optimization approaches in a manner that is substantially more
flexible and extensible compared to other widely used optimization frameworks.

Acknowledgements

We thank Jean-Paul Watson for feedback on the design of the PyUtilib Component Archi-
tecture. This work was supported by the Laboratory Directed Research and Development
program at Sandia National Laboratories. Sandia National Laboratories is a multi-program

21

laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
company, for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

References

[1] B. A. Allan and et al., A component architecture for high-performance scientific
computing, Intl J. of High Performance Computing Applications, 20 (2006), pp. 163–202.

[2] EnvisageCore. https://svn.enthought.com/enthought/wiki/EnvisageThree/

core.html, 2009.

[3] O. M. Group, CORBA component model specification, version 4.0, tech. rep., Object
Management Group, Inc., 2006.

[4] G. Heineman and W. Councill, eds., Component-Based Software Engineering,
Putting the Pieces Together, Addison-Wesley, 2001.

[5] R. Marvie, Picolo: A simple python framework for introducing component principles,
in Euro Python Conference 2005, June 2005.

[6] J. C. Meza, OPT++: An object-oriented class library for nonlinear optimization, Tech.
Rep. SAND94-8225, Sandia National Laboratories, 1994.

[7] Pyomo: Python optimization modeling objects. https://software.sandia.gov/trac/
pyomo, 2010.

[8] PyUtilib: A python utility library. http://software.sandia.gov/pyutilib, 2009.

[9] SprinklesPy. http://termie.pbworks.com/SprinklesPy, 2009.

[10] Trac component architecture. http://trac.edgewall.org/wiki/TracDev/

ComponentArchitecture, 2009.

[11] Trac. http://trac.edgewall.org/, 2009.

[12] yapsy. http://yapsy.sourceforge.net/, 2009.

[13] Zope. http://www.zope.org/, 2009.

22

