
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

16 Anonymous Network Channels: A Print Server
A print server is probably the simplest service used by users of a networked service. It provides a means

whereby a user can send a file for printing using a printer shared among the users of the network. In this

implementation a print service will be constructed that accepts print lines, a line at a time, from a user.

The print service will accept print lines from a number of users, in parallel, up to some limit set when the

print server is installed. Once the user has sent all the lines of text to be printed; the print server will then

output those lines in a single printed output. The printed output will be preceded by a job number that

can be recognised by the user of the service. The user of the service will be informed both when their job

has been accepted and when it has completed. The user will be unaware that the print service is dealing

with other user requests. The print service should run in the background and always be ready to accept

requests from a user, that is, the user processes should start asynchronously with the print service process.

The order in which the respective processes start should have no bearing on the operation of the system.

From the foregoing it is obvious that users need to request that their lines of output are sent to the print

service and subsequently on completion of their output the user needs to indicate that the lines of text can

be printed. To this end the print service provides two named channels by which the user can request and

subsequently release their use of the print service.

In addition, if the print service is going to manage print operations from more than one user in parallel

then some means of telling the user which of the services to use will be required. The user also needs to

be able to send lines to be printed to the print service. These connections will change with each print job

and thus the corresponding network channels will be created dynamically and anonymously.

The architecture of the system is shown in Figure 16-1. The PrintSpooler process provides the print

service using two named Net2One channels called request and release. The network connections are

indicated by the dashed lines, one for each channel. Each PrintUser process can dynamically connect to

the request and release channels by defining them as Any2Net when their node is created. In order to

avoid multiple communications on the request and release channels only one communication will be

permitted on each channel for each print job.

The diagram shows the state when the PrintSpooler is willing to accept print lines from up to two

PrintUser processes in parallel. These have been given names for clarity but in reality are anonymous.

The useChannel is used by PrintSpooler to tell the PrintUser the location of the printChannel it is

to use to send the lines to the PrintSpooler. The printChannel is used to send the lines to be printed to

the PrintSpooler.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

Figure 16-1 The Print Service Architecture

16.1 Print Spooler Data Objects

Two data objects are required, which both are used to transfer information from PrintUser processes to

the PrintSpooler process. The first, PrintJob, shown in Listing 16-1 is used to make an initial request

for service. It comprises two properties, the identity of the user {2} and the net channel location to be

used by PrintSpooler as the useChannel {3}. The manner of its creation and its use will be described

later.

01 class PrintJob implements Serializable {

02 def int userId
03 def NetChannelLocation useLocation
04 }

Listing 16-1 The PrintJob Data Object

The other data object, PrintLine, shown in Listing 16-2, is used to transfer lines to be printed from a

PrintUser process to the PrintSpooler process. It is written by the PrintUser to a printChannel.

The property printKey {6} indicates which, of the possibly several internal concurrent spoolers within

PrintSpooler, this line of text is intended. The String line {7} is the text to be added to the output.

05 class Printline implements Serializable {

06 def int printKey
07 def String line
08 }

Listing 16-2 The PrintLine Data Object

16.2 The PrintUser Process

Listing 16-3 shows the coding of the PrintUser process. This process has three properties;

printerRequest {10}, the network channel used to make requests to the PrintSpooler,

printerRelease {11}, the network channel used to release the PrintSpooler at the end of printing and

the identity of the user, userId{12}.

Print

Spooler

PrintUser

PrintUser

PrintUser

PrintUser

PrintUser

request

release

useChannel

printChannel

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

09 class PrintUser implements CSProcess {

10 def ChannelOutput printerRequest
11 def ChannelOutput printerRelease
12 def int userId

13 void run() {
14 def timer = new CSTimer()
15 def printList = ["line 1 for user " + userId,
16 "line 2 for user " + userId,
17 "last line for user " + userId
18]

19 def useChannel = NetChannelEnd.createNet2One()
20 printerRequest.write(new PrintJob (userId: userId,
21 useLocation: useChannel.getChannelLocation()))

22 def printChannelLocation = useChannel.read()
23 def useKey = useChannel.read()
24 println "Print for user ${userId} accepted using Spooler $useKey"

25 def printerChannel = NetChannelEnd.createOne2Net (printChannelLocation)
26 printList.each { printerChannel.write (new Printline (printKey: useKey,
27 line: it))
28 timer.sleep(10) }

29 printerRelease.write (useKey)
30 println "Print for user ${userId} completed"
31 }
32 }

Listing 16-3 The PrintUser Process Definition

A timer {14} is defined, which is used to create a short delay between lines sent to PrintSpooler. The

List printList {15-18} holds the lines of text that are to be printed. Each user prints the same output,

only differentiated by their userId.

NetChannelEnd is a network channel factory that can be used to create network channels and in this case

is used to create an anonymous Net2One or NetInputChannel {19}. This network channel is assigned to

variable useChannel. A PrintJob object is constructed from userId and the location of useChannel

{18-21}. The location of a network channel is obtained by calling the method getChannelLocation()

{21}, which returns the IP address, port and unique channel number of the channel. The PrintJob object

is then written to the printRequest network channel. This write {20} may be delayed if the

PrintSpooler is already dealing with the maximum number of print requests, but the user will be

unaware of this, in the sense that they have to undertake any additional processing. This is also the first

part of a client behaviour with its corresponding server response being the read of a

printerChannelLocation on the useChannel {22}. The useChannel is also used to read useKey from

the PrintSpooler {23}. The useKey is the means by which the PrintUser process identifies which of

the concurrent spoolers maintained by PrintSpooler it is to use. A message is then printed indicating

that the request has been accepted {24}.

The process now creates the channel printerChannel on which it is to send lines to the PrintSpooler.

The location of this channel has been read as printerChannelLocation. A network channel can be

created from this location by a call to the NetChannelEnd factory to create a One2Net channel with the

location specified in printerChannelLocation {25}. This channel is then used to write each of the

printList elements to printerChannel using a constructed PrintLine object for each element {26-

27} This is then followed by a short delay of 10 milliseconds {28}. The Groovy operator each iterates

through the elements of a List and the associated closure can refer to the specific element using the it

keyword.

Once all the elements of PrintList have been written to the PrintSpooler it can be released and this is

simply achieved by writing the useKey to the printerRelease channel {29}, after which a message can

be printed.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

16.3 The PrintSpooler Process

Listings 16-4 and 16-5 show the coding of the PrintSpooler process. Properties printerRequest {35}

and printerRelease {36} are the named request and release networked channels PrintUsers use to

indicate their desire to access the PrintSpooler. The PrintSpooler will create two concurrent

spoolers by default {37} but this can be changed when the process is invoked.

33 class PrintSpooler implements CSProcess {
34
35 def ChannelInput printerRequest
36 def ChannelInput printerRelease
37 def int spoolers = 2
38
39 void run() {
40 def spooling = 0
41 def spoolChannels = []
42 def spoolChannelLocations = [:]
43 def unusedSpoolers = []
44 def printMap = [:]
45 def jobMap = [:]

46 def preCon = new boolean[spoolers + 2]
47
48 0.upto(spoolers - 1){i ->
49 def c = NetChannelEnd.createNet2One()
50 spoolChannels << c
51 spoolChannelLocations.put(i, c.getChannelLocation())
52 unusedSpoolers << i
53 preCon[i+2] = false
54 }
55 def altChans = [printerRelease, printerRequest]
56 altChans = altChans + spoolChannels
57 preCon[0] = true
58 def psAlt = new ALT (altChans)

Listing 16-4 PrintSpooler Initialisation

The variable spooling {40} is used to count how many concurrent users are sending output to the

PrintSpooler and initially this is none. SpoolChannels will hold a List of the channels that will

become the printChannels of Figure 16-1. These will be created at the outset rather than recreating them

on each occasion individually for each print request. The Map spoolChannelLocations {42} will hold

the NetChannelLocation of each spool channel used by each spooler; its key is the index of the spooler.

The List unusedSpoolers {43} holds the index of the spoolers that are currently not being used. The

Map printMap {44} is used to hold the lines for each concurrent print request and its key is the associated

spooler index. The Map jobMap {45} is used to maintain the connection between spooler index and user

requesting the print job.

The prcoess is going to use an alternative to determine which input channels it will receive input from.

These are going to be further managed using a precondition array and this is defined as preCon {46}.

There is an input channel for each spooler plus the two named request and release channels, giving the

number of elements in the array.

Lines {48-54} initialise these data structures as follows by iterating over the number of spoolers {48},

with i indexed from 0. A NetChannelInput c is created as an anonymous NetChannelEnd {49} and this

will be subsequently used as the printChannel. It is then appended to spoolChannels {50}. Its net

channel location is then put in the i’th element of spoolChannelLocations {51}. The value of i is

then appended to the List of unusedSpoolers {52}. Finally, preCon[i+2] {53} is set false indicating

that the processes cannot accept input on any of its spool channels. The List altChans {55} is

initialised with the printerRelease and printerRequest channels to which is added the List of

spoolChannels {56}. The process is always willing to accept an input on its release channel and so

preCon[0] is set true {57}. The reason for the offset of i+2 {53} is to take account of the fact that the

printer release and request channels appear first in the alternative psAlt {58}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

59 while (true) {
60 preCon[1] = (spooling < spoolers)
61 def index = psAlt.select(preCon)
62 switch (index) {
63 case 0: // release
64 def usedKey = printerRelease.read()
65 unusedSpoolers.add(usedKey)
66 preCon[usedKey + 2] = false
67 spooling = spooling - 1
68 def lines = printMap.get(usedKey)
69 print "\n\nOutputFor User ${jobMap.get(usedKey)}\n"
70 println "Produced using spooler $usedKey \n\n"
71 lines.each{ println "${it}" }
72 println "\n\n================================\n\n"
73 printMap.remove(usedKey)
74 jobMap.remove(usedKey)
75 break

76 case 1: // request
77 def job = printerRequest.read()
78 def useChannelLocation = job.useLocation
79 def userId = job.userId
80 def useChannel = NetChannelEnd.createOne2Net(useChannelLocation)
81 spooling = spooling + 1
82 def useKey = unusedSpoolers.pop()
83 preCon[useKey+2] = true
84 printMap[useKey] = []
85 jobMap[useKey] = userId
86 useChannel.write(spoolChannelLocations.get(useKey))
87 useChannel.write(useKey)
88 break

89 default : // printline being received from a user
90 def pLine = spoolChannels[index - 2].read()
91 printMap[pLine.printKey] << pLine.line
92 }
93 }
94 }
95 }

Listing 16-5 The PrintSpooler Process Loop

At the start of each iteration a test is made to determine the state of preCon[1] {60} which ensures that a

request for service will only be accepted if at least one of the available spoolers is free. The index of the

enabled alternative is selected {61} and used to determine which case is processed.

Case 0 represents an input on the release channel, which means that the lines can be printed and the

assocoiated spooler released for another user. The input usedKey from the printerRelease channel

identifies the spooler allocated to the user {64}. This spooler can then be added to the List of

unusedSpoolers {65}. The process is now unwilling to accept any more inputs from the user and thus

sets the corresponding preCon element false {66}. Similalrly, the number of spooling spoolers can be

decremented {67}. The List lines comprises the Map entry for usedKey {68} obtained using the Map

get() method. The printed output banner lines can now be printed {69-70}, after which the lines can

themselves be printed {71} followed by a terminating banner {72}. The Map entry for usedKey can now

be removed {73}. Similarly the entry relating job and user from jobMap can be removed {74}. This

code sequence recovers the printing resources, prints the lines and ensures that the associated data

structure have been udated accordingly.

Case 1 pertains to a request for printing by a user process and will only be accepted if at least one of the

spoolers is available. The print job details are read from the printerRequest channel {77} and the

PrintJob properties are extracted into variables useChannelLocation {78} and userId {79}. The

channel by which the PrintSpooler process sends data to the PrintUser process, useChannel, is

created by taking the value of useChannelLocation {80} as a parameter to a call of

NetChannelEnd.CreateOne2Net(). In the PrintSpooler process we are creating the output end of the

channel to be connected to the input end that was created in the PrintUser process {19}. The number of

spoolers that are spooling can be incremented {81} and the index of an unused spooler can be pop’ed

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

from the List of unusedSpoolers {82} and assigned to useKey. The pre condition element of the array

preCon associated with this spooler can be set true because the process is now willing to accept inputs on

the related spool channel {83}. A Map entry that uses useKey as its key can be initialised to an empty

List {84}. An entry can be placed in jobMap that relates useKey to the userId of the job being

processed by this spooler {85}.

The PrintSpooler process acts as a server to the PrintUser processes and a request for service {18-21}

expects a response in finite time. The generated response is the location of the spool channel that the

PrintUser process is to use for writing lines of text to the PrintSpooler {86}. Secondly, the value of

useKey which is used by the PrintUser process to identify which spooler is being used to form the lines

of text to be output {87}.

The default case {89} is perhaps the simplest and simply reflects the input of a line of text from a

PrintUser process to the PrintSpooler. The line of text is read into pLine from the element of

spoolChannels indexed by index – 2 {90}. The value of index is obtained from the select method

call on the alternative psAlt {61}. However, psAlt precedes that spoolChannels with the

printerRelease and printerRequest channels and thus it is necessary to subtract 2 from the index

value to access the correct element of spoolChannels. The variable pLine is of type PrintLine and the

properties printKey and line are used to add the line to the printMap entry for the printKey {91}. In

this manner each of the active PrintUser processes can send lines to the PrintSpooler adding lines to

the List contained in the printMap. All that is required by a PrintUser process is the key of the

printMap used to add lines to the List of lines. Thus, each spooler is in fact just represented by an entry

in the printMap structure.

16.4 Summary

This chapter has introduced the concept of anonymous network channels and demonstrated how they can

be used, in conjunction with two named channels, to provide a flexible network based service. In the next

chapter we shall show how this concept can be extended to permit the transfer of processes from one node

to another enabling the transferred process to access data on the original node.

