
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

8 Client-Server: Deadlock Avoidance by Design
Chapter 7 demonstrated with two examples, one obvious and the other less so, that deadlocked systems

can be constructed quite easily even if the thought given to the design would suggest otherwise. A design

pattern is required that ensures deadlock and also livelock freedom. Brinch Hansen [ref] formulated a

design approach for operating systems in the 1970s based upon a client-server architecture. It is a slightly

updated version of that design approach that is presented here as the client-server design pattern. It is

captured in two simple rules, together with a method for analysing a network.

1. A client process that issues a request to a server process guarantees to accept any response from that

server immediately. A client – server interaction requires a client request upon the server but it is not

necessary for there to be a communication from the server to the client process.

2. A server process that accepts a request from a client process guarantees to return a response to the

client process within finite time. In addition, a server process will never send a message to any of its

clients without having first received a request from a client. A server process can behave as a client to

another server process.

3. Deadlock and livelock will not occur in such a network of client and server processes provided a

labelling of the client and server ends of the interactions between processes does not result in a

completed circuit of clients and servers.

8.1 Analysing the Queue Accessing System

The Queue system discussed previously in Section 6.2 is, in fact, an example of a system that implements

the above set of client – server rules.

Figure 8-1 Client - Server Labelling of the Queue Processing System

The process QProducer acts as a client to Queue process, which acts as a server. This interaction does

not involve a return communication from Queue to QProducer. QConsumer also acts as a client to the

Queue process but in this interaction the QConsumer process does expect a response. The client behaviour

C S

get

S C

QProducer

Queue

QConsumer

put

receive

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

of the QProducer process is captured in the following code snippet taken from Listing 5-6. The client

request is captured in the write method on the channel put {2}.

01 for (i in 1 .. iterations) {
02 put.write(i)
03 }

Similarly, the client behaviour of QConsumer is shown in the following snippet and is taken from Listing

5-7. The client request is captured in the write on the get channel {5}, which can be simply interpreted

as a signal for the Queue process. As a client the QConsumer must be ready to receive a response from the

Queue process as soon as it is available. This is simply achieved by reading the response on the receive

channel {6}. Crucially, no other processing takes place between the request {5} and the response {6}.

04 while (running) {
05 get.write(1)
06 def v = receive.read()
07 }

The Queue process, see Listing 5-8, simply alternates over the put and get channels and thus can never

generate an output of its own accord and thus behaves as a server for both its interactions. The network,

shown in Figure 8-1, contains no circuits and thus is guaranteed to be free from deadlock and livelock.

8.2 Client and Server Design Patterns

The behaviour of processes that implement the Client and Servers patterns is given in the following

design templates.

08 class ClientTemplate implements CSProcess {

09 def ChannelOutput request
10 def ChannelInput response // may not be required

11 void run() {
12 // initialise
13 while (true) {
14 // create server request object
15 request.write (requestObject) // could be a signal
16 result = response.read() // may not be required
17 // process result
18 }
19 }
20 }

Template 8-1 Client Design Template

A process that behaves as a client (Template 8-1) will have an output channel upon which it makes

requests to its server {2}. It will probably have an input channel upon which it receives responses

{3} from the server but this may not always be necessary. A client process may undertake some

initialisation {5} before entering the main loop of the process {6}. Depending upon the nature of the

interaction the client process will either create a requestObject {7} or cause a signal to be sent to the

server {8}if no explicit data is required for the server to respond to the client process. The client process

will immediately wait for the response from the server if there is one {9}. The process will then continue

processing.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

21 class ServerTemplate implements CSProcess {

22 def ChannelInput request
23 def ChannelOutput response // may not be required

24 void run() {
25 // initialise
26 while (true) {
27 def requestObject = request.read() // may be a signal
28 // process requestObject
29 // determine any result, may require request to another server
30 response.write(result) // may not be required
31 // update any internal state
32 }
33 }
34 }

Template 8-2 Server Design Template

The server template (see Template 8-2) indicates that a server process requires a request {15} input

channel and may have a response {16} output channel if there is an explicit result written to the

corresponding client process. The server may undertake some initialisation {18} after which it enters the

main loop of the process {19}. The server responds to client requests by either reading some form of

requestObject or a signal {20}. The nature of the request is determined unless that is implicit as a

result of receiving a signal {21}. The server then determines the result, which may require access to

another server {22} after which the result is written to the client {23}. The server then may have to

update some internal state {24} before repeating the loop.

By inspection we can determine that the client template does implement the behavioural requirements of a

client given previously in that once it has made a request on a server it is immediately ready to receive the

response from that server. Similarly the server process template shows that the server will respond in

finite time. Two cases need to be considered. If the server makes no request to another server then the

response must be fully determined within the server process and thus this can be completed in finite time

as there will be no other communication, which is the only source of indefinite delay, provided the

computation is finite. If the server process makes a client style request on another server then provided

the requested server maintains the client server contract then this server can respond in finite time.

8.3 Analysing the Crossed Servers Network

Figure 8-2 shows the client-server labelling of the network shown previously in Figure 7-2. The

relationship between the Client and Server processes is not the problem and in fact by inspection of the

Client process, Listing 7-3 lines {39-40}, it can be seen that this process does in fact implement client

behaviour.

The problem lies with the Server processes, where there is a circuit from one Server to the other and

back again. Even if we implemented the Server, Listing 7-4, so that it did not interleave access, it would

still deadlock. In the implementation, shown in Listing 7-4, the chance of deadlock occurring is

compounded because the Server does not wait for a response from the other Server but starts another

client interaction. A simplistic solution could be attempted by making the Server process act as a client

when it is accessing the other Server. This will decrease the incidence of deadlock but it will still happen

less frequently, which perhaps makes it even more annoying for the Client processes. Thus a different

solution has to be found.

S S

C C

Server Server

C

S

C

S

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

Figure 8-2 Client - Server Labelling of the Crossed Server Network

8.4 Deadlock Free Multi-Client and Servers Interactions

Figure 8-3 shows a solution to the problem that is achieved by the use of a multiplexer. A multiplexer is

a process that accepts inputs from a number of input channels and then outputs these input

communications on a single output channel. A set of simple multiplexers is described in Appendix ??.

Figure 8-3 Multi-Client and Server Network

A Client makes a request upon a Multiplexer behaving as a server, which contains the data required to

determine upon which Server the required data resides. The Multiplexer then behaves as a client and

makes a request to the required Server. The corresponding data is then returned from the Server to the

Multiplexer and then finally the Client receives the data it requested. By inspection of the network we

can see there are no circuits of client server labelling and hence the network will be deadlock free,

provided the processes are implemented in a manner that respects the rules of the client-server design

pattern.

8.4.1 The Multiplexer Process

Listing 8-1 shows the multiplexer used in this system. CSMux is more complex than the simple

multiplexer concept described previously. Requests are received from Clients by CSMux behaving as a

server and then CSMux determines the Server upon which the required data is to be found. The request is

then forwarded to a Server by the CSMux behaving as a client. CSMux waits for the response from a

Server that it then returns to the original Client behaving as a server. CSMux utilises properties of type

ChannelInputList and ChannelOutputList. These are two helper classes created as part of the

S

C

Client

C

S

Client

C

S

Multiplexer

S

C

Client

C

S

Client

C

S

Multiplexer

Server Server

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

Groovy Parallel capability, see Appendix 2. As their names suggest these provide lists of channel input

ends and channel output ends respectively.

08 class CSMux implements CSProcess {

09 def ChannelInputList inClientChannels
10 def ChannelOutputList outClientChannels
11 def ChannelInputList fromServers
12 def ChannelOutputList toServers
13 def serverAllocation = []

14 void run() {
15 def servers = toServers.size()
16 def muxAlt = new ALT (inClientChannels)

17 while (true) {
18 def index = muxAlt.select()
19 def key = inClientChannels[index].read()
20 def server = -1

21 for (i in 0 ..< servers) {
22 if (serverAllocation[i].contains(key)) {
23 server = i
24 break
25 }
26 }

27 toServers[server].write(key)
28 def value = fromServers[server].read()
29 outClientChannels[index].write(value)

30 }
31 }
32 }

Listing 8-1 The Multiplexer Coding

The ChannelInputList inClientChannels {9} is a list of input channel ends from each of the Clients

connected to CSMux. Similarly, fromServers {11} is a list of the channel input ends coming from each

of the Servers connected to CSMux. The list of out channels ends that connects CSMux to its Clients is

contained in the property outClientChannels {10} and the outputs from CSMux to the connected

Servers is passed as property toServers{12}. The property serverAllocation is a List of Lists

such that each internal List contains the keys of the values held respectively in each Server. There is

one list element per Server in serverAllocation {13}. The size() method is used to find the number

of Servers {15} because there must be as many Server processes as there are channels in toServers.

The alternative, muxAlt {16}, is simply constructed from the inClientChannels ChannelInputList.

Within the loop {17-30}, the index of the enabled alternative is selected {18} and its value used to read

a key value from the corresponding element of inClientChannels {19}. The for loop {21-26} is used

to determine in which server the key is located. The value of the key is written to the server element

of the ChannelOutputList toServers {27}. As this is the start of a client style interaction the value

corresponding to the key is read, as soon as it is available on the server element of the

ChannelInputList fromServers {28}. This maintains the client-server relationship between CSMux

and the Server. The value is then written to the index element of outClientChannels {29} thereby

completing the server style interaction between CSMux and the originating Client process.

This interaction typifies a more complex client and server interaction whereby the client makes a request

on a server style process which then becomes a client to another server. This can be undertaken as many

times as the application requires and provided there are no circuits in the clients and servers is guaranteed

to be deadlock free, provided the processes implement the client and server behaviours as defined

previously.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

8.4.2 The Server Process

The coding of the Server process is shown in Listing 8-2. A Server has two channel list properties, one,

fromMux is the input channels from CSMux {34} and the other {35}, toMux, provides the output channels

to CSMux. The property datamap {36} is used to hold the Map of keys and values held within this Server.

An alternative serverAlt is used to alternate over the fromMux input channels {38}. Once an enabled

alternative has been selected {40}, its index is used to read the key value from the corresponding

element of fromMux {41}. This key value is then used to access dataMap, the value of which is written to

the related CSMux process using the index element of toMux {42}.

This simple interaction implements the simplest form of server behaviour, whereby the server reads the

request and responds immediately to the request with the required data value.

33 class Server implements CSProcess{

34 def ChannelInputList fromMux
35 def ChannelOutputList toMux
36 def dataMap = [:]

37 void run() {
38 def serverAlt = new ALT(fromMux)

39 while (true) {
40 def index = serverAlt.select()
41 def key = fromMux[index].read()
42 toMux[index].write(dataMap[key])
43 }
44 }
45 }

Listing 8-2 The Server Process Definition

8.4.3 Exercising the System of Clients and Servers

Listings 8-3 to 8-6 give the parts of the script that cause the system of Clients, CSMux processes and

Servers to be invoked and permit the number of Clients per CSMux to be varied at run time. The

number of Servers is limited to 2, identified as Server zero and Server one. Similarly there are two

CSMux processes providing the multiplex capability, referred to as CSMux zero and one respectively. In

particular, it can be seen that the Client process definition used in Chapter 7 is reused {46}, further

reinforcing that it already implemented the required client behaviour.

Listing 8-3 initially obtains the number of clients {48} and then uses this value together with servers

{48} to create a set of One2OneChannel arrays {49-56}. The naming convention uses C to refer to a

Client connection, M a CSMux connection and S a Server connection. Thus, M0ToC0 {52} provides the

connection from CSMux zero to the Clients attached to that multiplexer and M1ToS connects CSMux one to

both Servers.

46 import c7.Client

47 def clients = Ask.Int ("Number of clients per server; 1 to 9 ? ", 1, 9)
48 def servers = 2

49 One2OneChannel[] C0ToM0 = Channel.createOne2One (clients)
50 One2OneChannel[] M0ToC0 = Channel.createOne2One (clients)
51 One2OneChannel[] C1ToM1 = Channel.createOne2One (clients)
52 One2OneChannel[] M1ToC1 = Channel.createOne2One (clients)

53 One2OneChannel[] M1ToS = Channel.createOne2One (servers)
54 One2OneChannel[] M0ToS = Channel.createOne2One (servers)

55 One2OneChannel[] S0ToM = Channel.createOne2One (servers)
56 One2OneChannel[] S1ToM = Channel.createOne2One (servers)

Listing 8-3 Channel Declarations

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 7

Listing 9-4 demonstrates how these channel arrays are converted to instances of ChannelInputList and

ChannelOutputList by simply calling the constructor of the required class {57-64}. For the channels

lists that provide the cross connections between the Server and CSMux processes we first create new,

empty, instances of the necessary channel lists, to which the required channel elements are appended {65-

76}. The regularity of the coding arises because all the elements at one end of a channel list have to be

allocated to different processes whereas they all accessed by a single process at the other end.

57 def clientsToM0 = new ChannelInputList (C0ToM0)
58 def clientsToM1 = new ChannelInputList (C1ToM1)

59 def M0ToClients = new ChannelOutputList(M0ToC0)
60 def M1ToClients = new ChannelOutputList(M1ToC1)

61 def Mux0ToServers = new ChannelOutputList(M0ToS)
62 def Mux1ToServers = new ChannelOutputList(M1ToS)

63 def Server0ToMuxes = new ChannelOutputList (S0ToM)
64 def Server1ToMuxes = new ChannelOutputList (S1ToM)

65 def Server0FromMuxes = new ChannelInputList()
66 Server0FromMuxes.append(M0ToS[0].in())
67 Server0FromMuxes.append(M1ToS[0].in())

68 def Server1FromMuxes = new ChannelInputList()
69 Server1FromMuxes.append(M0ToS[1].in())
70 Server1FromMuxes.append(M1ToS[1].in())

71 def Mux0FromServers = new ChannelInputList ()
72 Mux0FromServers.append(S0ToM[0].in())
73 Mux0FromServers.append(S1ToM[0].in())

74 def Mux1FromServers = new ChannelInputList ()
75 Mux1FromServers.append(S0ToM[1].in())
76 Mux1FromServers.append(S1ToM[1].in())

Listing 8-4 Channel List Definitions

Listing 8-5 shows the definition of the Map data structures {77-80} that are passed to each Server

instance as the property dataMap {36}. The serverKeyLists {81-82} comprise the sets of key values

associated with each Server and are passed to each CSMux as property serverAllocation {13}.

Similarly, the list of key values which each Client process is to access is defined separately for the

Clients connected to each CSMux process {83, 84}. These Lists are passed to a Client process as

property selectList {Listing 7-3, 33}.

77 def server0Map = [1:10, 2:20, 3:30, 4:40, 5:50,
78 6:60, 7:70, 8:80, 9:90, 10:100]

79 def server1Map = [11:110,12:120,13:130,14:140,15:150,
80 16:160,17:170,18:180,19:190,20:200]

81 def serverKeyLists = [[1,2,3,4,5,6,7,8,9,10],
82 [11,12,13,14,15,16,17,18,19,20]]

83 def client0List = [1,2,3,14,15,6,7,18,9,10]

84 def client1List = [11,12,13,4,5,16,17,8,19,20]

Listing 8-5 Server Maps and Client List Definitions

Listing 8-6 constructs the network of processes required to run the system. The collect method is used

to construct a list of processes that are returned as new Client process instances in the associated closure.

Two such Lists are required one for each set of Clients attached to each of the CSMux processes {86-

97}. In the definition of a new Client note how the individual elements of the channel arrays are

accessed and further note that the ends of the channels so referenced are not part of the previously defined

channel lists.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 8

85 def network = []

86 def server0ClientList = (0 ..< clients).collect { i ->
87 return new Client (requestChannel: C0ToM0[i].out(),
88 receiveChannel: M0ToC0[i].in(),
89 clientNumber: i,
90 selectList: client0List)
91 }

92 def server1ClientList = (0 ..< clients).collect { i ->
93 return new Client (requestChannel: C1ToM1[i].out(),
94 receiveChannel: M1ToC1[i].in(),
95 clientNumber: i+10,
96 selectList: client1List)
97 }

98 network << new CSMux (inClientChannels: clientsToM0,
99 outClientChannels: M0ToClients,
100 fromServers: Mux0FromServers,
101 toServers: Mux0ToServers,
102 serverAllocation: serverKeyLists)

103 network << new CSMux (inClientChannels: clientsToM1,
104 outClientChannels: M1ToClients,
105 fromServers: Mux1FromServers,
106 toServers: Mux1ToServers,
107 serverAllocation: serverKeyLists)

108 network << new Server (fromMux: Server0FromMuxes,
109 toMux: Server0ToMuxes,
110 dataMap: server0Map)

111 network << new Server (fromMux: Server1FromMuxes,
112 toMux: Server1ToMuxes,
113 dataMap: server1Map)

114 new PAR(network + server0ClientList + server1ClientList).run()

Listing 8-6 The Process Definitions to Run a Variable Number of Clients per CSMux With Two Servers

The empty List network is then populated with the required instances of the CSMux and Server

processes {98-113}. Finally, a PAR is invoked {114} by passing the sum of all the process lists as its

parameter, which can then be run(). The output from an execution of the network is analysed by

ensuring that the Server dataMaps are accessed in the order specified in client0List and client1List. It

should be noted that the Client processes attached to CSMux zero are numbered from 0 and those to

CSMux one from 10. It can be observed that all the Clients access all the required elements of the servers

in the order specified. If the system is executed with one Client per CSMux; then the version that

deadlocked in Chapter 7 can be seen to be operating entirely as expected because the elements accessed

from each server are those that deadlocked previously. The major change is that we can now run multiple

clients per server, thereby increasing the complexity of the interactions that are being undertaken.

8.5 Summary

In this chapter the concept of the client-server design pattern has been introduced. This is the most

important design pattern we shall use and will become fundamental to all the subsequent designs used in

the rest of the book.

8.6 Exercises

1. Modify the Client process c7.Client so that it can ensure that the values returned from the Server

arrive in the order expected according to their selectList property. It should print a suitable

message that the test has been undertaken and whether it passed or failed. You are not to use the

GroovyTestCase mechanism because this would require that the CSMux and Server processes would

have to terminate, which would require a lot of unnecessary programming. A solution is

demonstrated in chapter ?? that eliminates the need for tested processes to terminate.

