
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

3 Process Networks: Build It Like Lego
1

One of the main advantages of the CSP based approach we are using is that processes can be combined

using a simple compositional style. It is very much what you see is what you get!

In arithmetic the meaning of the composition 1 + 2 + 3 is immediately obvious and results in the answer

6. The composition of processes is equally simple and obvious. Thus we can build a set of basic building

block processes
2
, like Lego bricks, from which we can construct larger systems, the meaning of which

will be obvious given our understanding of the basic processes.

All of the building block processes are to be found in the package org.jcsp.groovy.plugAndPlay. A

more detailed discussion of these processes is to be found in Appendix 4.

3.1 Prefix Process

The process diagram of GPrefix is given in Figure 3-1 and its definition is presented in Listing 3-1.

GPrefix initially outputs the prefixValue on its outChannel {7} and thereafter it writes everything it

reads on its inChannel {9} to its outChannel, using a non-terminating loop {8-10}.

Figure 3-1 GPrefix Process Diagram

The GPrefix process has an input channel inChannel and an output channel outChannel, which are

properties of the process {4, 5}. In addition, there is a property called prefixValue that has the initial

value 0 {3}, which can be changed when a process instance is created.

1
 Lego is a registered trademark of the LEGO Group, www.lego.com

2
 The basic processes are based upon those in the package org.jcsp.plugNplay. This is denoted by the G in process name

GPrefix - prefixValue inChannel outChannel

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

01 import org.jcsp.lang.*

02 class GPrefix implements CSProcess {

03 def int prefixValue = 0
04 def ChannelInput inChannel
05 def ChannelOutput outChannel

06 void run () {
07 outChannel.write(prefixValue)
08 while (true) {
09 outChannel.write(inChannel.read())
10 }
11 }
12 }

Listing 3-1 GPrefix Process Definition

3.2 Successor Process

The process diagram for GSuccessor is shown in Figure 3-2 and its coding in Listing 3-2. The process

simply {19} reads in a value on its inChannel and then writes this value plus 1 to its outChannel. It

does this in a while loop that never terminates {18-20}.

Figure 3-2 GSuccessor Process Diagram

13 import org.jcsp.lang.*

14 class GSuccessor implements CSProcess {

15 def ChannelInput inChannel
16 def ChannelOutput outChannel

17 void run () {
18 while (true) {
19 outChannel.write(inChannel.read() + 1)
20 }
21 }
22 }

Listing 3-2 GSuccessor Process Definition

3.3 Parallel Copy

The process diagram for GPCopy is given in Figure 3-3 and its coding in Listing 3-3. The process inputs a

value on its inChannel {27}, which it outputs to outChannel0 {28} and outChannel1 {29} in parallel.

This is repeated forever. By outputting to its output channels in parallel we are assured that it does not

matter the order in which these channels are read by the corresponding input channels. We are also

guaranteed that a read on its input channel will not take place until both the outputs have completed

because a parallel (PAR) does not terminate until all its constituent processes have terminated.

Figure 3-3 Process Diagram of GPCopy

outChannel0
GPCopy inChannel

outChannel1

GSuccessor

inChannel outChannel

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

23 import org.jcsp.plugNplay.ProcessWrite
24 import org.jcsp.lang.*
25 import org.jcsp.groovy.*

26 class GPCopy implements CSProcess {

27 def ChannelInput inChannel
28 def ChannelOutput outChannel0
29 def ChannelOutput outChannel1

30 void run () {

31 def write0 = new ProcessWrite (outChannel0)
32 def write1 = new ProcessWrite (outChannel1)
33 def parWrite2 = new PAR ([write0, write1])

34 while (true) {
35 def i = inChannel.read()
36 write0.value = i
37 write1.value = i
38 parWrite2.run()
39 }
40 }
41 }

Listing 3-3 GPCopy Process Definition

GPCopy utilises the process ProcessWrite from org.jcsp.plugNplay, demonstrating that we can

incorporate previously written Java processes into the Groovy environment. Two instances of

ProcessWrite are defined {31, 32} each accessing one of the output channels. A PAR of the two

processes is then defined {33} called parWrite2, which is not run at this time. An instance of

ProcessWrite has a publicly available field called value that is assigned the data to be written.

The non-terminating loop {34-39} firstly reads in a value from the inChannel {35}, the value of which is

assigned to the value fields of the two ProcessWrite instances, write0 {36}and write1 {37}. The

parallel parWrite2 is then run {38}, which causes the writing of the value read in from inChannel to

outChannel0 and outChannel1 in parallel, after which it terminates. ProcessWrite terminates as soon

as it has written a single value to its output channel. Once parWrite2 has terminated, processing resumes

at the while loop {34}.

3.4 Generating a Sequence of Integers

The three processes, GPrefix, GSuccessor and GPCopy can be combined to form a network that outputs a

sequence of integers on outChannel as shown in Figure 3-4 and Listing 3-4.

Figure 3-4 Process Network Diagram to Generate a Stream of Integers (GNumbers)

GPrefix - 0 GPCopy

GSuccessor

a

b c

outChannel

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

42 import org.jcsp.lang.*
43 import org.jcsp.groovy.*

44 class GNumbers implements CSProcess {

45 def ChannelOutput outChannel

46 void run() {

47 One2OneChannel a = Channel.createOne2One()
48 One2OneChannel b = Channel.createOne2One()
49 One2OneChannel c = Channel.createOne2One()

50 def numbersList = [new GPrefix (prefixValue: 0,
51 inChannel: c.in(),
52 outChannel: a.out()),

53 new GPCopy (inChannel: a.in(),
54 outChannel0: outChannel,
55 outChannel1: b.out()),

56 new GSuccessor (inChannel: b.in(),
57 outChannel: c.out())
58]

59 new PAR (numbersList).run()
60 }
61 }

Listing 3-4 Definition of the GNumbers Process

The GNumbers process has a single output channel outChannel property {45} upon which the stream of

integers is output. Three internal channels a, b and c are defined {47-49} as One2OneChannel interfaces

and these are used to connect the processes together in a manner that directly reflects the process network

diagram, Figure 3-4. Note that in Groovy we do not need to specify the types of the channels but for

explanation and additional type checking this is done to aid clarity. For example, the two output channels

of GPCopy are assigned to the property outChannel and b.out() while its input channel is assigned to

a.in().

The design process becomes one of creating a process network diagram and then using that to define the

required channels which are then used to connect the processes together. The system is able to check,

using the interface specifications, that an input end of a channel specified by the in() method is

connected to a ChannelInput and similarly for output channels because we have specified the types of

the channels in the properties of the process class definitions.

3.5 Testing GNumbers

Figure 3-5 shows the process network that can be used to test the operation of the process GNumbers. It is

apparent that the easiest way of testing the process GNumbers is to print the stream of numbers to the

console window. For this purpose a GPrint process is provided. GPrint has a ChannelInput for

reading the stream of numbers as the property inChannel. It also has a property, heading, that is a

String, which contains a title for the printed stream. The corresponding script for the network shown in

Figure 3-5 is given in Listing 3-5.

Figure 3-5 Network to Test GNumbers

GNumbers
N2P

GPrint

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

62 import org.jcsp.lang.*
63 import org.jcsp.groovy.*

64 One2OneChannel N2P = Channel.createOne2One()

65 def testList = [new GNumbers (outChannel: N2P.out()),

66 new GPrint (inChannel: N2P.in(),
67 heading : "Numbers")
68]

69 new PAR (testList).run()

Listing 3-5 The Script to Test GNumbers

A single channel is created {64} called N2P that is used to connect GNumbers to GPrint. The list of

processes is created {65-68} with the properties assigned to the input and output ends of N2P and the

heading property of GPrint is set to “Numbers”. A typical output is shown in Output 3-1. It is noted

that the user has to terminate the system by interrupting the console stream using the Eclipse terminate

program button. The processes have been constructed using never ending while-loops and thus run

forever, unless otherwise terminated.

Numbers
0
1
2
3
4
5
6
7
8
9
10
11

Output 3-1 Output from the Script Test GNumbers

3.6 Creating a Running Sum

We will now use the output from GNumbers as input to a process called GIntegrate that reads a stream

of integers and outputs the running sum of the numbers read so far, as another stream of numbers. In

order to do this we shall need a process that undertakes addition of numbers arriving in a stream of such

numbers. The GPlus process does this and its coding is shown in Listing 3-6.

70 import org.jcsp.plugNplay.ProcessRead
71 import org.jcsp.lang.*
72 import org.jcsp.groovy.*

73 class GPlus implements CSProcess {

74 def ChannelOutput outChannel
75 def ChannelInput inChannel0
76 def ChannelInput inChannel1

77 void run () {

78 ProcessRead read0 = new ProcessRead (inChannel0)
79 ProcessRead read1 = new ProcessRead (inChannel1)
80 def parRead2 = new PAR ([read0, read1])

81 while (true) {
82 parRead2.run()
83 outChannel.write(read0.value + read1.value)
84 }
85 }
86 }

Listing 3-6 GPlus process coding

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

The GPlus process uses techniques similar to that used in GPCopy, except that we read from two input

channels in parallel using the process ProcessRead, which reads a single value from a channel and then

terminates. GPlus has two input channels, inChannel0 and inChannel1 {75, 76} and one output

channel, outChannel {74} upon which the sum of the two inputs are written. Two ProcessRead

processes are constructed called read0 {78} and read1 {79} and these are used to construct a PAR called

parRead2 {80}. The main loop of the process {81-84} initially invokes the parallel parRead2 {82}.

This parallel only terminates when both read0 and read1 have read a value and terminated. The values

read are obtained from a publicly available field, value, of a ProcessRead. The two values are added

together and then written to the output channel {83}.

Listing 3-7 gives the coding for the process GIntegrate and its associated process network diagram is

given in Figure 3-6. The coding can be seen to be a representation of the diagram in the same way as

previous transformations of diagrams into codings.

The operation of GIntegrate proceeds as follows. The process GPrefix can output its initial value, 0,

which forms one of the inputs to GPlus, using channel c. The other input from GPlus is read from

GIntegrate’s inChannel. The GPlus process and hence the GIntegrate process will now wait until

there is an input on the inChannel. Once this arrives the addition of the two values will take place and

the result written to the channel a, which forms the input to GPCopy. GCopy can now output the current

sum on the outChannel and also send a copy to GPrefix, using channel b, which immediately outputs

the value unaltered to the channel c. In this way the current running sum is circulated around the network

and is also output to a subsequent process.

Figure 3-6 Process Network Diagram of GIntegrate

outChannel inChannel

GPrefix - 0

GPlus GPCopy

b c

a

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 7

87 import org.jcsp.lang.*
88 import org.jcsp.groovy.*

89 class GIntegrate implements CSProcess {

90 def ChannelOutput outChannel
91 def ChannelInput inChannel

92 void run() {

93 One2OneChannel a = Channel.createOne2One()
94 One2OneChannel b = Channel.createOne2One()
95 One2OneChannel c = Channel.createOne2One()

96 def integrateList = [new GPrefix (prefixValue: 0,
97 outChannel: c.out(),
98 inChannel: b.in()),

99 new GPCopy (inChannel: a.in(),
100 outChannel0: outChannel,
101 outChannel1: b.out()),

102 new GPlus (inChannel0: inChannel,
103 inChannel1: c.in(),
104 outChannel: a.out())
105]

106 new PAR (integrateList).run()
107 }
108 }

Listing 3-7 GIntegrate Process Definition

A process network to test the operation of GIntegrate, by outputting the current value of running sum is

presented in Figure 3-7. GNumbers provides the input stream into GIntegrate using the channel N2I and

the output from GIntegrate is written, using the channel I2P, to the GPrint process which writes the

stream of numbers to the console.

The script that invokes this network is shown in Listing3-8. The script is taken directly from the process

network diagram by connecting the output and input ends of each of the channels, N2I and I2P, to the

appropriate property of the processes.

Figure 3-7 The Process Network to Demonstrate the Operation of GIntegrate

109 import org.jcsp.lang.*
110 import org.jcsp.groovy.*

111 One2OneChannel N2I = Channel.createOne2One()
112 One2OneChannel I2P = Channel.createOne2One()

113 def testList = [new GNumbers (outChannel: N2I.out()),

114 new GIntegrate (inChannel: N2I.in(),
115 outChannel: I2P.out()),

116 new GPrint (inChannel: I2P.in(),
117 heading: "Integrate")
118]

119 new PAR (testList).run()

Listing 3-8 Script that Implements the Network of Figure 3-7

Output 3-2 shows the console window after the network has been allowed to execute for a short period of

time. It can be seen by observation that each output is the sum of the numbers so far from the sequence 0,

1, 2, … . Later, we shall see how we can output all the intermediate values.

GNumbers GPrint
I2P

GIntegrate
N2I

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 8

Integrate
0
1
3
6
10
15
21
28
36
45

Output 3-2 Running Sum Generated by the Sequence of Positive Integers

3.7 Generating the Fibonacci Sequence

The Fibonacci sequence comprises; 0, 1, 1, 2, 3, 5, 8, 13, 21, …fn-2+fn-1, …. The first two numbers in the

sequence f0 and f1 have to be predefined and are typically set to 0 and 1 but could be any value. It can be

seen that we need to create the first two numbers in the sequence and we already have a process, GPrefix

that achieves this. We now need a process that will read two numbers, in sequence and then output the

sum of the pair of numbers. The next iteration will take the second number in the sequence and pair it to

the third number that is input, output their sum and so on.

3.7.1 Adding Pairs of Numbers

Listing 3-9 gives the definition of a process that inputs a stream of numbers and outputs another stream

which contains the sum of pairs of numbers. The process GStatePairs initially reads in two numbers

from the input stream, inChannel, {156, 157} then, within a loop outputs their sum {159} to

outChannel, copies the second number to the first {160}and then reads another number n2 from

inChannel {161}.

120 class GStatePairs implements CSProcess {

121 def ChannelOutput outChannel
122 def ChannelInput inChannel

123 void run() {

124 def n1 = inChannel.read()
125 def n2 = inChannel.read()

126 while (true) {
127 outChannel.write (n1 + n2)
128 n1 = n2
129 n2 = inChannel.read()
130 }
131 }
132 }

Listing 3-9 Process GStatePairs

The process network diagram that implements the generation of the Fibonacci sequence is shown in

Figure 3-8 and its associated process definition is shown in Listing 3-10.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 9

Figure 3-8 Process Network Diagram to Generate the Fibonacci Sequence

Initially, GPrefix-0 is the only process that can run because it is the only one that can undertake an

output. GPCopy is waiting for an input as is GStatePairs. GPrefix-1 is trying to output and will not be

able to, until GPrefix-0 reads from its input channel, which it will do once it has written the 0 to GPCopy.

It can be seen, by inspection, that the code given in Listing 3-10, directly implements the process network

diagram given in Figure 3-8. The four channels, a, b, c and d are defined {136-139}. The list of

processes is then created as testList {140-151} comprising four elements, one for each of the required

processes. The list of processes is then invoked using a PAR {152}.

133 class FibonacciV1 implements CSProcess {

134 def ChannelOutput outChannel

135 void run () {

136 One2OneChannel a = Channel.createOne2One()
137 One2OneChannel b = Channel.createOne2One()
138 One2OneChannel c = Channel.createOne2One()
139 One2OneChannel d = Channel.createOne2One()

140 def testList = [new GPrefix (prefixValue: 0,
141 inChannel: d.in(),
142 outChannel: a.out()),

143 new GPrefix (prefixValue: 1,
144 inChannel: c.in(),
145 outChannel: d.out()),

146 new GPCopy (inChannel: a.in(),
147 outChannel0: b.out(),
148 outChannel1: outChannel),

149 new GStatePairs (inChannel: b.in(),
150 outChannel: c.out()),
151]

152 new PAR (testList).run()
153 }
154 }

Listing 3-10 Fibonacci Process Definition

Listing 3-11 shows the script by which the output from the Fibonacci system can be produced using the

previously defined GPrint process.

GPrefix - 0

GPrefix - 1

GPCopy

GStatePairs

a

b

c

d

outChannel

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 10

155 One2OneChannel F2P = Channel.createOne2One()

156 def testList = [new FibonacciV1 (outChannel: F2P.out()),

157 new GPrint (inChannel: F2P.in(),
158 heading: "Fibonacci V1")
159]

160 new PAR (testList).run()

Listing 3-11 The Script to Output the Fibonacci Sequence

The output from this script is shown in Output 3-3.

Fibonacci V1
0
1
1
2
3
5
8
13
21
34
55
89

Output 3-3 Console Output from Script Generating the Fibonacci Sequence

There is, however, a problem with this solution because we now have a process definition for

GStatePairs (Listing 3-9) that contains some state (n1 and n2) that is retained between iterations of the

process. All the other process defined so far, contain no such state. We have also defined a process

GStatePairs that does addition within it and yet we have already defined a process GPlus (Listing 3-6)

that undertakes stateless addition. How can we build another process that enables us to use the GPlus

process and which yet can be used to create the affect of GStatePairs? This may seem a somewhat

esoteric argument but processes that contain state are much more difficult to modify should changes be

required in future, especially if it is desired to modfy their behaviour dynamically. This is discussed in

the next chapter.

3.7.2 Using GPlus to Create the Sum of Pairs of Numbers

In order to use GPlus we need two input streams comprising the numbers to be added together. We can

use GPCopy to copy the input stream, which would give us two identical streams. We however require

adding the current number to the previous one. Hence we require a process that removes the first number

from one of the streams and then just outputs what it inputs. If this process is inserted into one of the

streams coming from GPCopy then we will create that stream with the current number and the other will,

in fact contain the previous number. This is shown in Figure 3-9, where the process GTail is introduced.

Figure 3-9 GPairs Process Network that Adds Pairs of Numbers using GPlus

The definition of GTail is shown in Listing 3-12. The first value sent to inChannel is read but not

retained {165}. Thereafter, objects are read from inChannel and immediately written to outChannel

{167}. This formulation retains no state between iterations of the loop {166-168}.

c

GPCopy

GPlus
GTail

a
outChannel inChannel

b

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 11

161 class GTail implements CSProcess {

162 def ChannelOutput outChannel
163 def ChannelInput inChannel

164 void run () {
165 inChannel.read()
166 while (true) {
167 outChannel.write(inChannel.read())
168 }
169 }
170 }

Listing 3-12 Definition of GTail

The operation of the network given in Figure 3-9 is as follows; the first number, 0, is read by GPCopy and

copied to channels a and b in parallel. GTail reads the 0 on channel b and ignores it! Meanwhile the

output on channel a is read by GPlus. GPCopy now reads the next number, 1, and attempts to copy this to

both channels a and b in parallel. That to channel b will be read by GTail and immediately output to

channel c to be read by GPlus, which can now do the addition and subsequent output of the sum of 0 and

1. GPCopy is now able to write the copy of 1 to the channel a as GPlus is now ready to read, in parallel.

The system continues in this manner, with none of the processes retaining any state and simply relying on

the fact that processes input from and output to multiple channels in parallel and that the order in which

the communications takes places does not matter. The semantics of channel communication ensure that

no data is lost.

The coding of the stateless version of the process, GPairs, to add pairs of numbers from a stream is

shown in Listing 3-13 and follows the structure shown in Figure 3-9.

171 class GPairs implements CSProcess {

172 def ChannelOutput outChannel
173 def ChannelInput inChannel

174 void run() {

175 One2OneChannel a = Channel.createOne2One()
176 One2OneChannel b = Channel.createOne2One()
177 One2OneChannel c = Channel.createOne2One()

178 def pairsList = [new GPlus (outChannel: outChannel,
179 inChannel0: a.in(),
180 inChannel1: c.in()),

181 new GPCopy (inChannel: inChannel,
182 outChannel0: a.out(),
183 outChannel1: b.out()),

184 new GTail (inChannel: b.in(),
185 outChannel: c.out())
186]

187 new PAR (pairsList).run()
188 }
189 }

Listing 3-13 The GPairs Process Definition

The definition of the second version of the Fibonnaci process is the same as that given in Listing 3-10

with line 149-150 replaced with the invocation of the constructor for GPairs instead of GStatePairs.

The execution of the second version is the same as that shown in Listing 3-11 with line 156 creating and

instance of the second version of the Fibonnaci process rather than the first. The output is identical from

both systems.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 12

3.7.3 Lessons Learned

We should always try to reuse existing processes whenever possible and that often the best way of

solving a problem is to define another process rather than changing or extending an existing one. In other

words, if we try to keep each process as simple as possible and to compose systems from lots of small,

easily understood processes it will be easier to argue about the behaviour of the complete network.

3.8 Generating Squares of Numbers

In this example, we will reuse the processes we have created so far to create a sequence of squares of

numbers. The process network to achieve this is shown in Figure 3-10 and the corresponding Listing 3-

14 gives the process definition. The process simply writes to its outChannel the squares of the numbers

starting with 1 upwards. It can be tested by connecting the outChannel to a GPrint process.

Figure 3-10 The GSquares Process Network

By inspection it can be seen that the GSquares process Listing 3-14 does implement the network given in

Figure 3-10. However, what is not obvious is how this result is achieved. To try to understand this we

need to print the output from each stage of the squares process. For this we require a process that prints a

number of parallel inputs.

190 class GSquares implements CSProcess {

191 def ChannelOutput outChannel

192 void run () {

193 One2OneChannel N2I = Channel.createOne2One()
194 One2OneChannel I2P = Channel.createOne2One()

195 def testList = [new GNumbers (outChannel: N2I.out()),

196 new GIntegrate (inChannel: N2I.in(),
197 outChannel: I2P.out()),

198 new GPairs (inChannel: I2P.in(),
199 outChannel: outChannel),
200]

201 new PAR (testList).run()
202 }
203 }

Listing 3-14 GSquares Process Definition

3.9 Printing in Parallel

There are many occasions in which we wish to print output from a set of parallel processes so that the

output correlates the state of each process at a consistent point in their execution. The GParPrint process

achieves this by reading a number of inputs in parallel and then printing out each in a tabular manner one

set of inputs to a line of text. Its coding is shown in Listing 3-15.

The property inChannels {208} is of type ChannelInputList, which comprises a list of input channel

ends. A ChannelInpuitList is provided as one of the Groovy helper classes in the package

org.jcsp.groovy. It makes for easier processing of collections of channels. There is a similar object

for output channel ends called ChannelOutputList. The property headings {209} is a List of the same

size as inChannels, though this is not checked, of the title to be placed at the top of each column of

printed numbers. The property delay {210} is used to introduce a time delay between each line of

outChannel
GNumbers

I2P
GIntegrate

N2I
GPairs

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 13

printed output to make it easier to read as the output appears. The delay has a default value of 200

milliseconds and is of type long because the system clock returns times in that format. The default value

will be used if the property is not assigned a new value when the process is constructed.

204 import org.jcsp.lang.*
205 import org.jcsp.groovy.*
206 import org.jcsp.plugNplay.ProcessRead

207 class GParPrint implements CSProcess {

208 def ChannelInputList inChannels
209 def List headings
210 def long delay = 200

211 void run() {
212 def inSize = inChannels.size()
213 def readerList = []
214 (0 ..< inSize).each { i ->
215 readerList [i] = new ProcessRead (inChannels[i])
216 }
217 def parRead = new PAR (readerList)

218 if (headings == null) {
219 println "No headings provided"
220 }
221 else {
222 headings.each { print "\t${it}" }
223 println ()
224 }

225 def timer = new CSTimer()

226 while (true) {
227 parRead.run()
228 readerList.each { pr -> print "\t" + pr.value.toString() }
229 println ()
230 if (delay != 0) {
231 timer.sleep (delay)
232 }
233 }
234 }
235 }

Listing 3-15 The GParPrint Process Defintion

The number of inChannels in the ChannelInputList is obtained by applying the size() {212}

method. The variable readerList is defined {264} as an empty list and will be used to build the list of

ProcessRead processes that will be used to read from each of the inChannels in parallel. The closure

{214-216} iterates over each element in the range 0 to inSize-1 and constructs a ProcessRead process

accessing the i’th element of inChannels and allocating the instance to the corresponding element of

readerList {215}. A parallel is then constructed, parRead, using PAR, from readerList {217). The

collection of processes is not executed at this time.

The heading for each column of output is now created {218-224}. If the value of headings is null

{218} then a message indicating that no headings was provided is output {219}. Otherwise a heading is

written, tab separated (\t) using the elements of the List headings by a closure that iterates {222} over

each element of headings, using the each iterator method. The name it refers to the value returned by

the iterator. It is assumed but not checked that the number of elements in headings is the same as that in

inChannels.

A timer is now defined {225} of type CSTimer (see Chapter 9) that will be used to create the delay

between each line of output. The main loop of the process can now commence {226-233}. The first

requirement is to read the input values in parallel by executing parRead {227}. Once all the values have

been read on all the input channels, in any order, then we can print the values to the console window.

This is achieved by the use of a closure that iterates over each of the elements in readerList {228}. It

is assumed that any object printed by this process will have the method toString() defined. The

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 14

variable pr is assigned, in turn, each list element from which we extract the value field that can then be

printed. If the value of delay is greater than zero then the sleep method is called on timer, which

causes this process to stop execution, idle, for at least delay milliseconds {230-232}.

We can now use this process to print out all the intermediate values in the process network shown in

Figure 3-10. This is simply achieved by inserting GPCopy processes into each connecting channel and

sending one output to the next process and the other into the GParPrint process as shown in Figure 3-11.

Arrays of channels are used to make naming easier as shown in Listing 3-16. The channels connect

form links between the processes as a long chain or pipeline. The channels outChans provide the

connection between the intermediate GPCopy processes and the final process to the GParPrint process.

The output from GNumbers is sent via connect[0] to the first instance of GPCopy which outputs the value

in parallel to connect[1] and outChans[0]. Channel connect[1] then forms the input to GIntegrate,

the output from which is communicated on connect[2] to the second instance of GPCopy. Channel

connect[3] then sends the data stream to an instance of GPairs, the output of which is sent via

connect[4] to an instance of GPrefix, which then finally sends the stream to outChans[2]. The

GPrefix process has been inserted so that the tabular output is formatted correctly with a first line of

zeros. Recall that GPairs consumes the first pair of numbers and only outputs a single number, hence we

need to insert another number, 0, to form the tabular output correctly.

Figure 3-11 The Squares Network with Additional Printing

The arrays of channels are defined using an array constructor as shown in {238-239}. The list of inputs

to GParPrint are created by means of the constructor for ChannelInputList, which takes a parameter of

an array of channels and returns a list of channel input ends {240}. The list of Strings that make the

titles of the columns is then defined {241}. The list of processes as shown in Figure 3-11 is then

created connecting all the processes together {242-258}. Finally, the list of processes is invoked {259}

and produces the output shown in Output 3-4.

connect[3]

outChans[1]

connect[1]

connect[2]

connect[0]
GNumbers

GIntegrate

GPairs

GPCopy

GPCopy

GPrefix(0)

connect[4]

G

P

a

r

P

r

i

n

t

outChans[0]

outChans[2]

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 15

 n int sqr
 0 0 0
 1 1 1
 2 3 4
 3 6 9
 4 10 16
 5 15 25
 6 21 36
 7 28 49
 8 36 64
 9 45 81
 10 55 100
 11 66 121
 12 78 144
 13 91 169
 14 105 196
 15 120 225
 16 136 256

Output 3-4 Table of Numbers Showing Intermediate Stages in the Calculation of Squares

236 import org.jcsp.lang.*
237 import org.jcsp.groovy.*

238 One2OneChannel [] connect = Channel.createOne2One(5)
239 One2OneChannel [] outChans = Channel.createOne2One(3)

240 def printList = new ChannelInputList (outChans)

241 def titles = ["n", "int", "sqr"]

242 def testList = [new GNumbers (outChannel: connect[0].out()),

243 new GPCopy (inChannel: connect[0].in(),
244 outChannel0: connect[1].out(),
245 outChannel1: outChans[0].out()),

246 new GIntegrate (inChannel: connect[1].in(),
247 outChannel: connect[2].out()),

248 new GPCopy (inChannel: connect[2].in(),
249 outChannel0: connect[3].out(),
250 outChannel1: outChans[1].out()),

251 new GPairs (inChannel: connect[3].in(),
252 outChannel: connect[4].out()),

253 new GPrefix (prefixValue: 0,
254 inChannel: connect[4].in(),
255 outChannel: outChans[2].out()),

256 new GParPrint (inChannels: printList,
257 headings: titles)
258]

259 new PAR (testList).run()

Listing 3-16 Script to Invoke the Process Network Shown in Figure 3-11

Consideration of the output shows that the numbers do appear in sequence in the column headed “n”. The

column headed “int” does contain the running sum or integration of the numbers. If we ignore the zero

appearing in the first row of the column of squares headed “sqr”, which was generated by the GPrefix

process, then we see that there is indeed a list of the squares of the numbers in the first column.

3.10 Summary

We are now able to see why we can assert that this style of parallel processing has a compositional

semantics. We know that each process is correct in its own right. By using them together, in a

composition, we can go from a statement of what is required; generate a 0, generate a 1, then add the

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 16

sequence up in pairs to a network that directly implements the requirement. We have also reused

previously defined processes. This reuse and compositional capability means the system designer has to

understand the operation of each of the processes in terms of the use of a process’ input and output

channels, so they can be correctly connected to each other. It is for this reason that the types of channels

have been specified for class properties even though Groovy does not specifically require this to be done.

In this simple case we have not specified the nature of the object that is communicated over the channels,

as they are all of type Integer. In more complex systems the objects to be communicated should be

documented as well.

Of more importance, is we have reused a number of processes, in relatively simple networks, to create a

number of interesting results. We have also learnt that it is better to reuse existing processes wherever

possible, rather than writing new processes, even if this means that we have to write another process.

Parallel processing is not just a means of executing systems over a number of processors it also allows us

to design systems more easily by composing existing processes into larger systems.

3.11 Exercises

1. Write a process that undoes the effect of GIntegrate. This can be achieved in two ways, first, by

writing a Minus process that subtracts pairs of numbers read in parallel similar to GPlus or by

implementing a Negator process and inserting it before a GPlus process. Implement both approaches

and test them. Which is the more pleasing solution? Why?

1. Write a sequential version of GPCopy, called GSCopy that has the same properties as GPCopy. Make a

copy of Listing 3-13 replacing GPCopy by your GSCopy and call it GSPairsA. Create another version,

called GSPairsB in which the output channels outChannel0 and outChannel1 are assigned to the

other actual channel, that is a.out() is assigned to outChannel1 and b.out() is assigned to

outChannel1. Take Listing 3-14 as the basis and replace GPairs by GSPairsA or GSPairsB and

determine the effect of the change. Why does this happen? The accompanying web site contains the

basis for this exercise apart from the body of GSCopy. Hint: read Section 4.7.2 that describes the

operation of GTail.

2. Somewhat harder: Why was it considered easier to build GParPrint as a new process rather than

using multiple instances of GPrint to output the table of results?

3. A ChannelInputList has a read() method that inputs from each channel in the channel list in

parallel and returns a list, the same size as the ChannelInputList containing the object that has been

read from each channel in the ChannelInputList. Modify the coding of Listing 3-15 to make use of

this capability.

