Agda User Manual
Release 2.6.1

The Agda Team

Mar 15, 2020

1 Overview

2 Getting Started

2.1
2.2
23
24
2.5
2.6

Whatis Agda?,
Prerequisites
Installation
‘Hello world’ in Agda
Quick Guide to Editing, Type Checking and Compiling Agda Code
AListof Tutorials

3 Language Reference

3.1
3.2
33
34
35
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
322
3.23
3.24
3.25
3.26
3.27
3.28
3.29

Abstract definitionso
Built-inso
Coinduction
Copatterns
Core language
Cubical
Cumulativity,
DataTypes
FlatModality
Foreign Function Interface

Function Definitions

Function Types
Generalization of Declared Variables
Implicit Arguments

Instance Arguments

Irrelevance

Lambda Abstraction

Local Definitions: let and where
Lexical Structure

Literal Overloading

Mixfix Operators
Module System
Mutual Recursion
Pattern Synonyms L.
Positivity Checking 0.
Postulates oL
Pragmas
Prop.
Record Types,

CONTENTS

.......................... 70

6

7

330 Reflection. L e e
331 ReWIIHNG . . o . o v o e e e e e e e e e e e e e e e e e e e
3.32 Run-time [rrelevance L. L e e e e e e e e
333 Safe Agda L e
334 Sized TYPES . . . o o o i e e
335 Syntactic SUZAT v v i e e e e e e e e e e
3.36 Syntax Declarations o e e e e e e e e e e e e
337 TeleSCOPES . v v v v i e e e e e e e e e e e e e e e
3.38 Termination Checking L e
3.39 Universe Levels o o o e e e e e e
340 With-ADbStraction o o v i e e e e e e
341 Without K . . o o o

Tools

4.1 Automatic Proof Search (Auto) e e e
42 Command-line OPtiONS v v i e e e e e e e e e e e e e e e e e
43 Compilers o e e e e e e e e e e e
44 EmacsMode e e
4.5 Literate Programming oL e e e e e e e e e e
4.6 Generating HTML L e
477 Generating LaTeX e e e e e e e e e
4.8 Library Management o it e
4.9 Performance debugging L
4.10 Search Definitions in Scope L e e e e e e e

Contribute
5.1 Documentation i e e e e e e e e e e e e e e e e e e

The Agda Team and License

Indices and tables

Bibliography

Index

165
165
168
178
180
186
188
188
205
208
209

211
211

215

217

219

221

Agda User Manual, Release 2.6.1

T Agdo

CONTENTS 1

Agda User Manual, Release 2.6.1

2 CONTENTS

CHAPTER
ONE

OVERVIEW

Note: The Agda User Manual is a work-in-progress and is still incomplete. Contributions, additions and corrections
to the Agda manual are greatly appreciated. To do so, please open a pull request or issue on the GitHub Agda page.

This is the manual for the Agda programming language, its type checking, compilation and editing system and related
resources/tools. The latest PDF version of this manual can be downloaded from GitHub Actions page (instruction on
how to find them <https://github.com/actions/upload-artifact#where-does-the-upload-go>_).

You can find a lot of useful resources on Agda Wiki site, like tutorials, introductions, publications and books. If you’re
new to Agda, you should make use of the resources on Agda Wiki and chapter Getting Started instead of chapter
Language Reference.

A description of the Agda language is given in chapter Language Reference. Guidance on how the Agda editing and
compilation system can be used can be found in chapter 7ools.

https://github.com/agda/agda
https://github.com/agda/agda/actions?query=workflow%3A%22User+Manual%22+is%3Asuccess
https://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.HomePage
https://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Documentation

Agda User Manual, Release 2.6.1

4 Chapter 1. Overview

CHAPTER
TWO

GETTING STARTED

2.1 What is Agda?

T Agdo

Agda is a dependently typed programming language. It is an extension of Martin-L6f’s type theory and is the latest
in the tradition of languages developed in the programming logic group at Chalmers. Other languages in this tradition
are Alf, Alfa, Agda 1, Cayenne. Some other loosely related languages are Coq, Epigram, and Idris.

Because of strong typing and dependent types, Agda can be used as a proof assistant, allowing to prove mathematical
theorems (in a constructive setting) and to run such proofs as algorithms.

2.1.1 Dependent types
Typing for programmers

Type theory is concerned both with programming and logic. We see the type system as a way to express syntactic
correctness. A type correct program has a meaning. Lisp is a totally untyped programming language, and so are its
derivatives like Scheme. In such languages, if £ is a function, one can apply it to anything, including itself. This makes
it easy to write programs (almost all programs are well formed), but it also makes it easy to write erroneous programs.
Programs will raise exceptions or loop forever. And it is very difficult to analyze where the problems are.

Haskell or ML and its derivatives like Standard ML and Caml are typed languages, where functions come with a type
expressing what type of arguments the program expects and what the result type is.

Between these two families of languages come languages, which may or may not have a typing discipline. Most
imperative languages do not come with a rich type system. For example, C is typed, but very loosely (almost everything
is an integer or a variant thereof). Moreover, the typing system does not allow the definition of trees or graphs without
using pointers.

All these languages are examples of partial languages, i.e., the result of computing the value of an expression e of
type T is one of the following:

https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
http://www.cse.chalmers.se/~bengt/papers/alfengine.pdf
http://www.cse.chalmers.se/~hallgren/Alfa/
https://sourceforge.net/projects/agda/
https://en.wikipedia.org/wiki/Cayenne_(programming_language)
https://coq.inria.fr/
http://www.e-pig.org/
https://idris-lang.org/
https://ncatlab.org/nlab/show/type+theory
https://en.wikipedia.org/wiki/Lisp_%28programming_language%29
https://en.wikipedia.org/wiki/Scheme_%28programming_language%29
https://www.haskell.org/
https://en.wikipedia.org/wiki/ML_%28programming_language%29
https://en.wikipedia.org/wiki/Standard_ML
http://caml.inria.fr/
https://en.wikipedia.org/wiki/C_%28programming_language%29

Agda User Manual, Release 2.6.1

* the program terminates with a value in the type T
* the program e does not terminate

* the program raises an exception (which has been caused by an incomplete definition — for instance, a function
is only defined for positive integers but is applied to a negative integer.

Agda and other languages based on type theory are total languages in the sense that a program e of type T will
always terminate with a value in T. No runtime error can occur, and no nonterminating programs can be written
(unless explicitly requested by the programmer).

Dependent types

Dependent types are introduced by having families of types indexed by objects in another type. For instance, we can
define the type Vec n of vectors of length n. This is a family of types indexed by objects in Nat (a type parameterized
by natural numbers).

Having dependent types, we must generalize the type of functions and the type of pairs.

The dependent function space (a : 2A) -> (B a) is the type of the functions taking an argument a in a type
A and aresultin B a. Here, A is a type, and B is a family of types indexed by elements in A.

For example, we could define the type of n x m matrices as a type indexed by two natural numbers. Call this type
Mat n m. The function identity, which takes a natural number n as an argument and produces the n x n
identity matrix, is then a function of type identity : (n : Nat) -> (Mat n n).

Remark: We could, of course, just specify the identity function with the type Nat -> Nat -> Mat, where
Mat is the type of matrices, but this is not as precise as the dependent version.

The advantage of using dependent types is that it makes it possible to express properties of programs in the typing
system. We saw above that it is possible to express the type of square matrices of length n. It is also possible to define
the type of operations on matrices so that the lengths are correct. For instance, the type of matrix multiplication is

VvV {1 7 k} - (Mat i j) -> (Mat j k) => (Mat i k)

and the type system can check that a program for matrix multiplication really takes arguments of the correct size. It can
also check that matrix multiplication is only applied to matrices, where the number of columns of the first argument is
the same as the number of rows in the second argument.

Dependent types and logic
Thanks to the Curry-Howard correspondence, one can express a logical specification using dependent types. For
example, using only typing it is possible to define:

* equality on natural numbers

* properties of arithmetical operations

e the type (n : Nat) -> (PrimRoot n) consisting of functions computing primitive root in modular
arithmetic.

Of course, a program of the above type will be more difficult to write than the corresponding program of type Nat
—> Nat, which produces a natural number which is a primitive root. However, the difficulty can be compensated by
the fact that the program is guaranteed to work: it cannot produce something which is not a primitive root.

On a more mathematical level, we can express formulas and prove them using an algorithm. For example, a function
oftype (n : Nat) -> (PrimRoot n) isalso a proof that every natural number has a primitive root.

6 Chapter 2. Getting Started

https://ncatlab.org/nlab/show/dependent+type
https://en.wikipedia.org/wiki/Curry_Howard

Agda User Manual, Release 2.6.1

2.2 Prerequisites

You need recent versions of the following programs to compile Agda:
e GHC: https://www.haskell.org/ghc/
— Agda have been tested with GHC 8.0.2, 8.2.2, 8.4.4, 8.6.5 and 8.8.2.
e cabal-install: https://www.haskell.org/cabal/
e Alex: https://www.haskell.org/alex/
* Happy: https://www.haskell.org/happy/
* GNU Emacs: http://www.gnu.org/software/emacs/
You should also make sure that programs installed by cabal-install are on your shell’s search path.
For instructions on installing a suitable version of Emacs under Windows, see Installing Emacs under Windows.

Non-Windows users need to ensure that the development files for the C libraries z/ib* and ncurses* are installed (see
http://zlib.net and http://www.gnu.org/software/ncurses/). Your package manager may be able to install these files for
you. For instance, on Debian or Ubuntu it should suffice to run

apt-get install zliblg-dev libncursesb5-dev

as root to get the correct files installed.

Optionally one can also install the ICU library, which is used to implement the ——count-clusters flag. Under
Debian or Ubuntu it may suffice to install /ibicu-dev. Once the ICU library is installed one can hopefully enable the
——count-clusters flag by giving the enable-cluster-counting flag to cabal install.

2.2.1 Installing Emacs under Windows

A precompiled version of Emacs 26.1, with the necessary mathematical fonts, is available at http://www.cs.uiowa.edu/
~astump/agda.

2.3 Installation

There are several ways to install Agda:
* Using a released source package from Hackage
e Using a binary package prepared for your platform
* Using the development version from the Git repository

Agda can be installed using different flags (see Installation Flags).

2.2. Prerequisites 7

https://www.haskell.org/ghc/
https://www.haskell.org/cabal/
https://www.haskell.org/alex/
https://www.haskell.org/happy/
http://www.gnu.org/software/emacs/
http://zlib.net
http://www.gnu.org/software/ncurses/
http://site.icu-project.org
http://www.cs.uiowa.edu/~astump/agda
http://www.cs.uiowa.edu/~astump/agda
https://hackage.haskell.org/package/Agda
https://github.com/agda/agda

Agda User Manual, Release 2.6.1

2.3.1 Installation from Hackage

You can install the latest released version of Agda from Hackage. Install the prerequisites and then run the following
commands:

cabal update
cabal install Agda
agda—-mode setup

The last command tries to set up Emacs for use with Agda via the Emacs mode. As an alternative you can copy the
following text to your .emacs file:

(load-file (let ((coding-system-for-read 'utf-8))
(shell-command-to-string "agda-mode locate")))

It is also possible (but not necessary) to compile the Emacs mode’s files:

agda-mode compile

This can, in some cases, give a noticeable speedup.

Warning: If you reinstall the Agda mode without recompiling the Emacs Lisp files, then Emacs may continue using
the old, compiled files.

If you use Nix-style Local Builds, by using Cabal 3.0.0.0 or by running cabal v2-install, you’ll get the fol-
lowing error when compiling with the GHC backend:

Compilation error:

MAlonzo/RTE.hs:13:1: error:
Failed to load interface for ‘Numeric.IEEE’
Use -v to see a list of the files searched for.

This is because packages are sandboxed in SHOME/ .cabal/store and you have to explicitly register required
packaged in a GHC environment. This can be done by running the following command:

cabal v2-install --1ib Agda ieee?754

This will register ieee754 in the GHC default environment.

You may want to keep the default environment clean, e.g. to avoid conflicts with other installed packages. In this case
you can a create separate Agda environment by running:

’cabal v2—-install —--package—-env agda —--1lib Agda ieee754

You then have to set the GHC_ENVIRONMENT when you invoke Agda:

CHC_ENVIRONMENT=agda agda —-c hello-world.agda

Note: Actually it is not necessary to register the Agda library, but doing so forces Cabal to install the same version of
ieee754 as used by Agda.

8 Chapter 2. Getting Started

https://hackage.haskell.org/package/Agda
https://www.haskell.org/cabal/users-guide/nix-local-build-overview.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/packages.html?highlight=environment#package-environments
http://hackage.haskell.org/package/ieee754
http://hackage.haskell.org/package/ieee754

Agda User Manual, Release 2.6.1

2.3.2 Prebuilt Packages and System-Specific Instructions

Arch Linux

The following prebuilt packages are available:
* Agda
* Agda standard library

However, due to significant packaging bugs [such as this](https://bugs.archlinux.org/task/61904 7project=5&string=

agda), you might want to use alternative installation methods.

Debian / Ubuntu

Prebuilt packages are available for Debian and Ubuntu from Karmic onwards. To install:

’aptfget install agda-mode

This should install Agda and the Emacs mode.

The standard library is available in Debian and Ubuntu from Lucid onwards. To install:

’apt—get install agda-stdlib

More information:

* Agda (Debian)

» Agda standard library (Debian)
Agda (Ubuntu)

* Agda standard library (Ubuntu)
Reporting bugs:

Please report any bugs to Debian, using:

reportbug -B debian agda
reportbug -B debian agda-stdlib

Fedora

Agda is packaged in Fedora (since before Fedora 18).

yum install Agda

will pull in emacs-agda-mode and ghc-Agda-devel.

2.3. Installation

https://www.archlinux.org/packages/community/x86_64/agda/
https://www.archlinux.org/packages/community/x86_64/agda-stdlib/
https://bugs.archlinux.org/task/61904?project=5&string=agda
https://bugs.archlinux.org/task/61904?project=5&string=agda
https://tracker.debian.org/pkg/agda
https://tracker.debian.org/pkg/agda-stdlib
https://launchpad.net/ubuntu/+source/agda
https://launchpad.net/ubuntu/+source/agda-stdlib

Agda User Manual, Release 2.6.1

FreeBSD

Packages are available from FreshPorts for Agda and Agda standard library.

NixOS

Agda is part of the Nixpkgs collection that is used by https://nixos.org/nixos. To install Agda and agda-mode for
Emacs, type:

nix-env —-f "<nixpkgs>" -iA haskellPackages.Agda

If you’re just interested in the library, you can also install the library without the executable. The Agda standard library
is currently not installed automatically.

oS X

Homebrew is a free and open-source software package management system that provides prebuilt packages for OS
X. Once it is installed in your system, you are ready to install agda. Open the Terminal app and run the following
command:

brew install agda

This process should take less than a minute, and it installs Agda together with its Emacs mode and its standard library.
For more information about the brew command, please refer to the Homebrew documentation and Homebrew FAQ.

By default, the standard library is installed in the folder /usr/local/1lib/agda/. To use the standard library, it is
convenient to add the location of the agda-lib file /usr/local/lib/agda/standard-library.agda-1ib
tothe ~/.agda/libraries file, and write the line standard-libraryinthe ~/.agda/defaults file. To
do this, run the following commands:

mkdir -p ~/.agda
echo /usr/local/lib/agda/standard-library.agda-1ib >>~/.agda/libraries
echo standard-library >>~/.agda/defaults

Please note that this configuration is not performed automatically. You can learn more about using the standard library
or using a library in general.

It is also possible to install with the command-line option keywords ——without-stdlib, -——without—-ghc, or
from ——HEAD. This requires building Agda from source.

To configure the way of editing agda files, follow the section Emacs mode.

Note: If Emacs cannot find the agda-mode executable, it might help to install the exec-path-from-
shell package by doing M-x package—install RET exec-path-from-shell RET and adding the line
(exec-path-from-shell-initialize) to your .emacs file.

10 Chapter 2. Getting Started

https://www.freebsd.org/cgi/ports.cgi?query=agda&stype=all
https://nixos.org/nixos
https://brew.sh
https://docs.brew.sh/
https://docs.brew.sh/FAQ
https://github.com/purcell/exec-path-from-shell
https://github.com/purcell/exec-path-from-shell

Agda User Manual, Release 2.6.1

2.3.3 Installation of the Development Version

After getting the development version following the instructions in the Agda wiki:
e Install the prerequisites
* In the top-level directory of the Agda source tree

— Follow the instructions for installing Agda from Hackage (except run cabal install instead of
cabal install Agda)or

— You can try to install Agda (including a compiled Emacs mode) by running the following command:

make install

Note that on a Mac, because ICU is installed in a non-standard location, you need to specify this location
on the command line:

make install-bin CABAIL_OPTS='—--extra-lib-dirs=/usr/local/opt/icudc/lib —-
—extra-include-dirs=/usr/local/opt/icudc/include'’

2.3.4 Installation Flags

When installing Agda the following flags can be used:

cpphs
Use cpphs instead of cpp. Default: off.

debug
Enable debugging features that may slow Agda down. Default: off.

enable-cluster-counting
Enable the ——count-clusters flag. Note that if enable-cluster-counting is False, then the
——count-clusters flag triggers an error message. Default: off.

2.4 ‘Hello world’ in Agda

Below is a complete ‘hello world’ program in Agda (defined in a file hello-world.agda)

module hello-world where
open import IO

main = run (putStrLn "Hello, World!")

To compile the Agda file, either open it in Emacs and press C-c C-x C-c or run agda —--compile
hello-world.agda from the command line.

A quick line-by-line explanation:

* Agda programs are structured in modules. The first module in each file is the fop-level module whose name
matches the filename. The contents of a module are declaration such as data types and function definitions.

¢ Other modules can be imported using an import statement, for example open import IO. This imports
the /0 module from the standard library and brings its contents into scope.

2.4. ‘Hello world’ in Agda 11

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://hackage.haskell.org/package/cpphs
https://github.com/agda/agda-stdlib

Agda User Manual, Release 2.6.1

* A module exporting a function main : IO a can be compiled to a standalone executable. For exam-
ple: main = run (putStrLn "Hello, World!") runs the IO command putStrLn "Hello,
World!" and then quits the program.

2.5 Quick Guide to Editing, Type Checking and Compiling Agda Code

2.5.1 Introduction

Agda programs are commonly edited using Emacs or Atom. To edit a module (assuming you have installed Agda
and its Emacs mode (or Atom’s) properly), start the editor and open a file ending in . agda. Programs are developed
interactively, which means that one can type check code which is not yet complete: if a question mark (?) is used as a
placeholder for an expression, and the buffer is then checked, Agda will replace the question mark with a “hole” which
can be filled in later. One can also do various other things in the context of a hole: listing the context, inferring the
type of an expression, and even evaluating an open term which mentions variables bound in the surrounding context.

The following commands are the most common (see Notation for key combinations):
C—c C-1 Load. Type-checks the contents of the file.

C-c C—, Shows the goal type, i.e. the type expected in the current hole, along with the types of locally defined
identifiers.

C—c C-. A variantof C-c C-—, that also tries to infer the type of the current hole’s contents.

C—-c C-SPC Give. Checks whether the term written in the current hole has the right type and, if it does, replaces the
hole with that term.

C-c C-r Refine. Checks whether the return type of the expression e in the hole matches the expected type. If so,

the hole isreplacedbye { }1 ... { }n,where asufficient number of new holes have been inserted. If the
hole is empty, then the refine command instead inserts a lambda or constructor (if there is a unique type-correct
choice).

C—-c C-c Case split. If the cursor is positioned in a hole which denotes the right hand side of a definition, then this
command automatically performs pattern matching on variables of your choice.

C—-c C-n Normalise. The system asks for a term which is then evaluated.

M-. Go to definition. Goes to the definition site of the identifier under the cursor (if known).
M-* Go back (Emacs < 25.1)

M-, Go back (Emacs > 25.1)

For information related to the Emacs mode (configuration, keybindings, Unicode input, etc.) see Emacs Mode.

2.5.2 Menus

There are two main menus in the system:
* A main menu called Agda2 which is used for global commands.
* A context sensitive menu which appears if you right-click in a hole.

The menus contain more commands than the ones listed above. See global and context sensitive commands.

12 Chapter 2. Getting Started

http://www.gnu.org/software/emacs/
https://atom.io/packages/agda-mode

Agda User Manual, Release 2.6.1

2.5.3 Writing mathematical symbols in source code

Agda uses Unicode characters in source files (more specifically: the UTF-8 character encoding). Almost any character
can be used in an identifier (like V, «, A, or #, for example). It is therefore necessary to have spaces between most
lexical units.

Many mathematical symbols can be typed using the corresponding LaTeX command names. For instance, you type
\forall toinput V. A more detailed description of how to write various characters is available.

(Note that if you try to read Agda code using another program, then you have to make sure that it uses the right
character encoding when decoding the source files.)

2.5.4 Errors

If a file does not type check Agda will complain. Often the cursor will jump to the position of the error, and the error
will (by default) be underlined. Some errors are treated a bit differently, though. If Agda cannot see that a definition
is terminating/productive it will highlight it in light salmon, and if some meta-variable other than the goals cannot be
solved the code will be highlighted in yellow (the highlighting may not appear until after you have reloaded the file).
In case of the latter kinds of errors you can still work with the file, but Agda will (by default) refuse to import it into
another module, and if your functions are not terminating Agda may hang.

If you do not like the way errors are highlighted (if you are colour-blind, for instance), then you can tweak the settings
by typing M-x customize-group RET agda2-highlight RET in Emacs (after loading an Agda file) and
following the instructions.

2.5.5 Compiling Agda programs

To compile a module containing a function main :: IO A for some A (where IO can be found in the Primi-
tive.agda), use C-c C-x C-c. If the module is named A.B. C the resulting binary will be called C (located in the
project’s top-level directory, the one containing the A directory).

2.5.6 Batch-mode command

There is also a batch-mode command line tool: agda. To find out more about this command, use agda —-help.

2.6 A List of Tutorials

2.6.1 Introduction to Agda

Ulf Norell and James Chapman.
— Dependently Typed Programming in Agda. This is aimed at functional programmers.
¢ Ana Bove and Peter Dybjer.
— Dependent Types at Work. A gentle introduction including logic and proofs of programs.
* Ana Bove, Peter Dybjer, and Ulf Norell.

— A Brief Overview of Agda - A Functional Language with Dependent Types (in TPHOLSs 2009) with
an example of reflection. Code

¢ Anton Setzer.

2.6. A List of Tutorials 13

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/LaTeX
https://github.com/agda/agda-stdlib/blob/master/src/IO/Primitive.agda
https://github.com/agda/agda-stdlib/blob/master/src/IO/Primitive.agda
http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf
http://www.cse.chalmers.se/~peterd/papers/DependentTypesAtWork.pdf
https://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Documentation?action=download&upname=AgdaOverview2009.pdf
http://www.cse.chalmers.se/~ulfn/code/tphols09/

Agda User Manual, Release 2.6.1

— Lecture notes on Interactive Theorem Proving. Swansea University. These lecture notes are based
on Agda and contain an introduction of Agda for students with a very basic background in logic and
functional programming.

Daniel Peebles.
— Introduction to Agda. Video of talk from the January 2011 Boston Haskell session at MIT.
Conor McBride.

— Introduction to Dependently Typed Programming using Agda. (videos of lectures). Associated source
files, with exercises.

Andreas Abel.

— Agda lecture notes. Lecture notes used in teaching functional programming: basic introduction to
Agda, Curry-Howard, equality, and verification of optimizations like fusion.

Jan Malakhovski.
— Brutal [Meta]Introduction to Dependent Types in Agda
Thorsten Altenkirch.
— Computer Aided Formal Reasoning - online lecture notes
Daniel Licata.
— Dependently Typed Programming in Agda (OPLSS 2013).
Tesla Ice Zhang.
— Some books about Formal Verification in Agda (in Chinese)
— A blog created with Literate Agda (in Chinese)
Phil Wadler.
— Programming Languages Foundations in Agda
Aaron Stump.
— Verified Functional Programming in Agda
Divianszky Péter.
— Agda Tutorial
Musa Al-hassy.

— A slow-paced introduction to reflection in Agda

2.6.2 Courses using Agda

Computer Aided Reasoning Material for a 3rd / 4th year course (g53cfr, g54 cfr) at the university of Nottingham
2010 by Thorsten Altenkirch

Type Theory in Rosario Material for an Agda course in Rosario, Argentina in 2011 by Thorsten Altenkirch

Software System Design and Implementation , undergrad(?) course at the University of New South Wales by
Manuel Chakravarty.

Ttitibiteooria / Type Theory , graduate course at the University of Tartu by Varmo Vene and James Chapman.

Advanced Topics in Programming Languages: Dependent Type Systems , course at the University of Pennsyl-
vania by Stephanie Weirich.

14

Chapter 2. Getting Started

http://www.cs.swan.ac.uk/~csetzer/lectures/intertheo/07/interactiveTheoremProvingForAgdaUsers.html
https://www.youtube.com/playlist?p=B7F836675DCE009C
https://www.youtube.com/playlist?list=PL44F162A8B8CB7C87
https://personal.cis.strath.ac.uk/conor.mcbride/pub/dtp/
https://personal.cis.strath.ac.uk/conor.mcbride/pub/dtp/
http://www2.tcs.ifi.lmu.de/~abel/projects.html
https://oxij.org/note/BrutalDepTypes/
http://www.cs.nott.ac.uk/~psztxa/g53cfr/
https://www.cs.uoregon.edu/research/summerschool/summer13/curriculum.html
https://github.com/ice1000/Books
https://ice1000.org/lagda/
https://plfa.github.io/
https://dl.acm.org/citation.cfm?id=2841316
https://people.inf.elte.hu/divip/AgdaTutorial/Index.html
https://github.com/alhassy/gentle-intro-to-reflection
http://www.cs.nott.ac.uk/~psztxa/g53cfr/
http://www.cs.nott.ac.uk/~psztxa/rosario/
http://www.cse.unsw.edu.au/~cs3141/
https://courses.cs.ut.ee/2011/typet/Main/HomePage
https://www.seas.upenn.edu/~sweirich/cis670/09/

Agda User Manual, Release 2.6.1

* Categorical Logic , course at the University of Cambridge by Samuel Staton. - More info and feedback
* Dependently typed functional languages , master level course at EAFIT University by Andrés Sicard-Ramirez.

¢ Introduction to Dependently Typed Programming using Agda , research level course at the University of Edin-
burgh by Conor McBride.

* Agda, introductory course for master students at ELTE E6tvos Collegium in Budapest by Péter Dividanszky and
Ambrus Kaposi.

* Types for Programs and Proofs , course at Chalmers University of Technology.
¢ Advanced Functional Programming (in German), course at Ludwig-Maximilians-University Munich.

e Dependently typed metaprogramming (in Agda) , Summer (2013) course at the University of Cambridge by
Conor McBride.

* Computer-Checked Programs and Proofs (COMP 360-1), Dan Licata, Wesleyan, Fall 2013.

¢ Advanced Functional Programming Fall 2013 (CS410), Conor McBride, Strathclyde, notes from 2015, videos
from 2017.

e Interactive Theorem proving (CS__336), Anton Setzer, Swansea University, Lent 2008.

* Inductive and inductive-recursive definitions in Intuitionistic Type Theory , lectures by Peter Dybjer at the
Oregon Programming Languages Summer School 2015.

¢ Introduction to Univalent Foundations of Mathematics with Agda , MGS 2019 Martin Hotzel Escard6

2.6.3 Miscellaneous

* Agda has a Wikipedia page

2.6. A List of Tutorials 15

https://www.cl.cam.ac.uk/teaching/0910/L20/
http://permalink.gmane.org/gmane.comp.lang.agda/1579
http://www1.eafit.edu.co/asr/courses/dependently-typed-functional-languages/
https://github.com/mietek/agda-intro
https://people.inf.elte.hu/divip/AgdaTutorial/Index.html
http://www.cse.chalmers.se/edu/course/DAT140/
https://www.tcs.ifi.lmu.de/lehre/ss-2012/fun
https://danel.ahman.ee/agda-course-13/
http://dlicata.web.wesleyan.edu/teaching/ccpp-f13/
https://github.com/pigworker/CS410-13
https://github.com/pigworker/CS410-15/blob/master/CS410-notes.pdf
https://github.com/pigworker/CS410-17/
https://github.com/pigworker/CS410-17/
http://www.cs.swan.ac.uk/~csetzer/lectures/intertheo/07/
https://www.cs.uoregon.edu/research/summerschool/summer15/curriculum.html
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/index.html
https://en.wikipedia.org/wiki/Agda_(programming_language)

Agda User Manual, Release 2.6.1

16 Chapter 2. Getting Started

CHAPTER
THREE

LANGUAGE REFERENCE

3.1 Abstract definitions

Definitions can be marked as abstract, for the purpose of hiding implementation details, or to speed up type-checking
of other parts. In essence, abstract definitions behave like postulates, thus, do not reduce/compute. For instance,
proofs whose content does not matter could be marked abstract, to prevent Agda from unfolding them (which might
slow down type-checking).

As a guiding principle, all the rules concerning abstract are designed to prevent the leaking of implementation
details of abstract definitions. Similar concepts of other programming language include (non-representative sample):
UCSD Pascal’s and Java’s interfaces and ML’s signatures. (Especially when abstract definitions are used in combina-
tion with modules.)

3.1.1 Synopsis

* Declarations can be marked as abstract using the block keyword abstract.

* Outside of abstract blocks, abstract definitions do not reduce, they are treated as postulates, in particular:

Abstract functions never match, thus, do not reduce.

Abstract data types do not expose their constructors.

Abstract record types do not expose their fields nor constructor.

Other declarations cannot be abstract.

* Inside abstract blocks, abstract definitions reduce while type checking definitions, but not while checking their
type signatures. Otherwise, due to dependent types, one could leak implementation details (e.g. expose reduc-
tion behavior by using propositional equality).

* Inside private type signatures in abstract blocks, abstract definitions do reduce. However, there are some
problems with this. See Issue #418.

* The reach of the abstract keyword block extends recursively to the where-blocks of a function and the
declarations inside of a record declaration, but not inside modules declared in an abstract block.

17

https://github.com/agda/agda/issues/418#issuecomment-245590857

Agda User Manual, Release 2.6.1

3.1.2 Examples

Integers can be implemented in various ways, e.g. as difference of two natural numbers:

module Integer where

abstract

Z, = Nat X Nat

0% : 7
04 =0, O
17 Y/
1Z =1, 0
_+7Z (xy : Z) = 7Z
(p , n) +Z (p' , n') = (p +p') , (n +n")
-7 7 —
%4 (p , n) = (n, p)
=7 : (xy : Z) — Set
(p , n) =4 (p' , n') = (p +n') = (p' + n)
private

postulate

+comm : Vnm— (n+m = (m+ n)

invZ : V x = (x +Z (-7 x)) =%Z 0%
invZ (p , n) rewrite +comm (p + n) 0 | +comm p n = refl

Using abstract we do not give away the actual representation of integers, nor the implementation of the operations.
We can construct them from 07, 17, _+7Z_, and -7, but only reason about equality =7 with the provided lemma
invZ.

The following property shape—of-0Z of the integer zero exposes the representation of integers as pairs. As such,
it is rejected by Agda: when checking its type signature, proj; x fails to type check since x is of abstract type
Z. Remember that the abstract definition of 7Z does not unfold in type signatures, even when in an abstract block!
However, if we make shape—of-7Z private, unfolding of abstract definitions like 7Z is enabled, and we succeed:

A property about the representation of zero integers:

abstract
private
shape-of-0%Z : V (x : Z) (is0%Z : x =% 0Z) — proji1 X = projz X
shape-0f-0Z (p , n) refl rewrite +comm p 0 = refl

By requiring shape—-of—-07 to be private to type-check, leaking of representation details is prevented.

18 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

3.1.3 Scope of abstraction

In child modules, when checking an abstract definition, the abstract definitions of the parent module are transparent:

module M1 where
abstract
x = 0

module M2 where

abstract
x-is-0 : x = 0
x-1is-0 = refl

Thus, child modules can see into the representation choices of their parent modules. However, parent modules cannot
see like this into child modules, nor can sibling modules see through each others abstract definitions. An exception to
this is anonymous modules, which share abstract scope with their parent module, allowing parent or sibling modules
to see inside their abstract definitions.

The reach of the abstract keyword does not extend into modules:

module Parent where

abstract
module Child where
y =0
x =0 —-- to avoid "useless abstract" error

y—-is-0 : Child.y = 0
y—-is-0 = refl

The declarations in module Child are not abstract!

3.1.4 Abstract definitions with where-blocks

Definitions in a where block of an abstract definition are abstract as well. This means, they can see through the
abstractions of their uncles:

module Where where

abstract
x : Nat
x =0
y : Nat
y = x
where

x=y : x = 0
x=y = refl

Type signatures in where blocks are private, so it is fine to make type abbreviations in where blocks of abstract
definitions:

module WherePrivate where
abstract
x @ Nat
X = proj; t
where
T = Nat X Nat
t T

(continues on next page)

3.1. Abstract definitions 19

Agda User Manual, Release 2.6.1

(continued from previous page)

t=0,1
P proj; t = 0
p = refl

Note that if p was not private, application proj; t in its type would be ill-formed, due to the abstract definition of
T.

Named where-modules do not make their declarations private, thus this example will fail if you replace x’s where
by module M where.

3.2 Built-ins

Using the built-in types

The unit type

The Y-type

Booleans
e Natural numbers

* Machine words

Integers
* Floats

o Lists

Characters

o Strings

Equality

Universe levels

* Sized types

Coinduction

* JIO

Literal overloading

* Reflection

Rewriting

Static values

Strictness

The Agda type checker knows about, and has special treatment for, a number of different concepts. The most prominent
is natural numbers, which has a special representation as Haskell integers and support for fast arithmetic. The surface
syntax of these concepts are not fixed, however, so in order to use the special treatment of natural numbers (say) you
define an appropriate data type and then bind that type to the natural number concept using a BUILTIN pragma.

Some built-in types support primitive functions that have no corresponding Agda definition. These functions are
declared using the primitive keyword by giving their type signature.

20 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

3.2.1 Using the built-in types

While it is possible to define your own versions of the built-in types and bind them using BUILTIN pragmas, it is
recommended to use the definitions in the Agda .Builtin modules. These modules are installed when you install
Agda and so are always available. For instance, built-in natural numbers are defined in Agda.Builtin.Nat. The
standard library and the agda-prelude reexport the definitions from these modules.

3.2.2 The unit type

module Agda.Builtin.Unit

The unit type is bound to the built-in UNIT as follows:

record T : Set where
{—# BUILTIN UNIT T #-}

Agda needs to know about the unit type since some of the primitive operations in the reflected type checking monad
return values in the unit type.

3.2.3 The X-type

module Agda.Builtin.Sigma

The built-in X-type of dependent pairs is defined as follows:

record ¥ {a b} (A : Set a) (B : A — Set b) : Set (a L b) where
constructor _,_
field
fst : A

snd : B fst
open Y public
infixr 4 _,_

{-# BUILTIN SIGMA % #-}

3.2.4 Booleans

module Agda.Builtin.Bool where

Built-in booleans are bound using the BOOL, TRUE and FALSE built-ins:

data Bool : Set where

false true : Bool
{-# BUILTIN BOOL Bool #-}
{—-# BUILTIN TRUE true #-}
{—# BUILTIN FALSE false #-}

Note that unlike for natural numbers, you need to bind the constructors separately. The reason for this is that Agda
cannot tell which constructor should correspond to true and which to false, since you are free to name them whatever
you like.

3.2. Built-ins 21

https://github.com/agda/agda-stdlib
https://github.com/UlfNorell/agda-prelude

Agda User Manual, Release 2.6.1

The effect of binding the boolean type is that you can then use primitive functions returning booleans, such as built-in
NATEQUALS, and letting the GHC backend know to compile the type to Haskell Bool.

3.2.5 Natural numbers

module Agda.Builtin.Nat

Built-in natural numbers are bound using the NATURAL built-in as follows:

data Nat : Set where
zero : Nat
suc : Nat — Nat
{—# BUILTIN NATURAL Nat #-}

The names of the data type and the constructors can be chosen freely, but the shape of the datatype needs to match the
one given above (modulo the order of the constructors). Note that the constructors need not be bound explicitly.

Binding the built-in natural numbers as above has the following effects:

* The use of natural number literals is enabled. By default the type of a natural number literal will be Nat, but it
can be overloaded to include other types as well.

* Closed natural numbers are represented as Haskell integers at compile-time.
* The compiler backends compile natural numbers to the appropriate number type in the target language.

 Enabled binding the built-in natural number functions described below.

Functions on natural numbers

There are a number of built-in functions on natural numbers. These are special in that they have both an Agda definition
and a primitive implementation. The primitive implementation is used to evaluate applications to closed terms, and the
Agda definition is used otherwise. This lets you prove things about the functions while still enjoying good performance
of compile-time evaluation. The built-in functions are the following:

+ : Nat — Nat — Nat
zero + m =nm

suc n + m = suc (n + m)

{—# BUILTIN NATPLUS _+_ #-}

- : Nat — Nat — Nat

n — zZero =n

zero — sSuc m = ZzZero

suc n — suc m =n — m

{-# BUILTIN NATMINUS _—_ #-}
* : Nat — Nat — Nat

zero * m = zZero

suc n *m = (n x m + m

{—# BUILTIN NATTIMES _*_ #-}

==_: Nat — Nat — Bool

zero == zero = true

SuUC n == sSuC m = n == m

_ == _ = false

{—-# BUILTIN NATEQUALS _==_#-}

(continues on next page)

22 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

< : Nat — Nat — Bool
_ < zero = false
Zero < suc _ = true
suc n < sucm =n <m

{—# BUILTIN NATLESS _<_ #-}

div-helper : Nat — Nat — Nat — Nat — Nat

div-helper k m zero J = k
div-helper k m (suc n) zZero = div-helper (suc k) m nm
div-helper k m (suc n) (suc j) = div-helper k m n j

{—# BUILTIN NATDIVSUCAUX div-helper #-}

mod-helper : Nat — Nat — Nat — Nat — Nat

mod-helper k m zero J = k
mod-helper k m (suc n) Zero = mod-helper 0 m n m
mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j

{—# BUILTIN NATMODSUCAUX mod-helper #-}

The Agda definitions are checked to make sure that they really define the corresponding built-in function. The def-
initions are not required to be exactly those given above, for instance, addition and multiplication can be defined by
recursion on either argument, and you can swap the arguments to the addition in the recursive case of multiplication.

The NATDIVSUCAUX and NATMODSUCAUX are built-ins bind helper functions for defining natural number division
and modulo operations, and satisfy the properties

div n (suc m)
mod n (suc m)

div-helper 0 m n m
mod-helper 0 m n m

3.2.6 Machine words

module Agda.Builtin.Word
module Agda.Builtin.Word.Properties

Agda supports built-in 64-bit machine words, bound with the WORD 64 built-in:

postulate Word64 : Set
{—# BUILTIN WORD64 Word64 #-}

Machine words can be converted to and from natural numbers using the following primitives:

primitive
primWord64ToNat : Worde4 — Nat
primWord64FromNat : Nat — Word64

Converting to a natural number is the trivial embedding, and converting from a natural number gives you the remainder
modulo 2%, The proof of the former theorem:

primitive
primWord64ToNatInjective : V a b — primWord64ToNat a = primWord64ToNat b — a = b

is in the Properties module. The proof of the latter theorem is not primitive, but can be defined in a library using
primTrustMe.

Basic arithmetic operations can be defined on Word64 by converting to natural numbers, performing the correspond-
ing operation, and then converting back. The compiler will optimise these to use 64-bit arithmetic. For instance:

3.2. Built-ins 23

Agda User Manual, Release 2.6.1

addWord : Word64 — Word64 — Word64
addWord a b = primWord64FromNat (primWord64ToNat a + primWordé64ToNat b)

subWord : Word64 — Word64 — Wordé64
subWord a b = primWord64FromNat ((primWord64ToNat a + 18446744073709551616) -,
—primWord64ToNat b)

These compile to primitive addition and subtraction on 64-bit words, which in the GHC backend map to operations on
Haskell 64-bit words (Data.Word.Word64).

3.2.7 Integers

module Agda.Builtin.Int

Built-in integers are bound with the INTEGER built-in to a data type with two constructors: one for positive and one
for negative numbers. The built-ins for the constructors are INTEGERPOS and INTEGERNEGSUC.

data Int : Set where

pos : Nat — Int

negsuc : Nat — Int
{-# BUILTIN INTEGER Int #-}
{—# BUILTIN INTEGERPOS pos #-}
{—-# BUILTIN INTEGERNEGSUC negsuc #-}

Here negsuc n represents the integer -n - 1. Unlike for natural numbers, there is no special representation of
integers at compile-time since the overhead of using the data type compared to Haskell integers is not that big.

Built-in integers support the following primitive operation (given a suitable binding for String):

primitive
primShowInteger : Int — String

3.2.8 Floats

module Agda.Builtin.Float
module Agda.Builtin.Float.Properties

Floating point numbers are bound with the FLOAT built-in:

postulate Float : Set
{—# BUILTIN FLOAT Float #-)}

This lets you use floating point literals. Floats are represented by the type checker as IEEE 754 binary64 double
precision floats, with the restriction that there is exactly one NaN value. The following primitive functions are available
(with suitable bindings for Nat, Bool, String and Int):

primitive
primNatToFloat : Nat — Float
primFloatPlus : Float — Float — Float
primFloatMinus : Float — Float — Float
primFloatTimes : Float — Float — Float
primFloatNegate : Float — Float
primFloatDiv : Float — Float — Float

(continues on next page)

24 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

primFloatEquality : Float — Float — Bool
primFloatLess : Float — Float — Bool
primFloatNumericalEquality : Float — Float — Bool
primFloatNumericalless : Float — Float — Bool
primRound : Float — Int
primFloor : Float — Int
primCeiling : Float — Int

primExp : Float — Float
primLog : Float — Float
primSin : Float — Float
primCos : Float — Float
primTan : Float — Float
primASin : Float — Float
primACos : Float — Float
primATan : Float — Float
primATan2 : Float — Float — Float
primShowFloat : Float — String

The primFloatEquality primitive is intended to be used for decidable propositional equality. To enable proof
carrying comparisons while preserving consistency, the following laws apply:

nan=nan : primFloatEquality NaN NaN = true
nan=nan = refl

nan=-nan : primFloatEquality NaN (primFloatNegate NaN) = true
nan=-nan = refl

neg0#0 : primFloatEquality 0.0 -0.0 = false
neg0#0 = refl

Correspondingly, the primFloatLess can be used to provide a decidable total order, given by the following laws:

[<] : Float — Float — Set
X [<] y = primFloatLess x y && not (primFloatLess y x) = true
—inf<nan : -Inf [<] NaN
nan<neg : NaN [<] -1.0
neg<neg0 : -1.0 [<] -0.0
neg0<0 : -0.0 [K<] 0.0
O<pos 0.0 [<] 1.0
pos<Inf : 1.0 [<] Inf
—inf<nan = refl

nan<neg = refl

neg<neg0 = refl

neg0<0 = refl

O<pos = refl

pos<Inf = refl

For numerical comparisons, use the primFloatNumericalEquality and primFloatNumericalless
primitives. These are implemented by the corresponding IEEE functions.

Floating point numbers can be converted to its raw representation using the primitive:

primitive
primFloatToWord64 : Float — Wordoc4

which normalises all NaN to a canonical NaN with an injectivity proof:

3.2. Built-ins 25

Agda User Manual, Release 2.6.1

primFloatToWordé64Injective : V a b — primFloatToWordé4 a = primFloatToWordé64d b — a,
= Db

in the Properties module. These primitives can be used to define a decidable propositional equality with the
——safe option.

3.2.9 Lists

module Agda.Builtin.List

Built-in lists are bound using the LIST built-in:

data List {a} (A : Set a) : Set a where
[1] : List A
o (x ¢ A) (xs : List A) — List A
{—# BUILTIN LIST List #-}
infixr 5

The constructors are bound automatically when binding the type. Lists are not required to be level polymorphic; List
Set — Set is also accepted.

As with booleans, the effect of binding the LI ST built-in is to let you use primitive functions working with lists, such
as primStringToList and primStringFromList, and letting the GHC backend know to compile the List
type to Haskell lists.

3.2.10 Characters

module Agda.Builtin.Char
module Agda.Builtin.Char.Properties

The character type is bound with the CHARACTER built-in:

postulate Char : Set
{—# BUILTIN CHAR Char #-)}

Binding the character type lets you use character literals. The following primitive functions are available on characters
(given suitable bindings for Bool, Nat and String):

primitive

primIsLower : Char — Bool
primIsDigit : Char — Bool
primIsAlpha : Char — Bool
primIsSpace : Char — Bool
primIsAscii : Char — Bool
primIsLatinl : Char — Bool
primIsPrint : Char — Bool
primIsHexDigit : Char — Bool
primToUpper : Char — Char
primToLower : Char — Char
primCharToNat : Char — Nat
primNatToChar : Nat — Char
primShowChar : Char — String

26 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

These functions are implemented by the corresponding Haskell functions from Data.Char (ord and chr for
primCharToNat and primNatToChar). To make primNat ToChar total chr is applied to the natural number
modulo 0x110000.

Converting to a natural number is the obvious embedding, and its proof:

primitive
primCharToNatInjective : V a b — primCharToNat a = primCharToNat b — a = b

can be found in the Properties module.

3.2.11 Strings

module Agda.Builtin.String
module Agda.Builtin.String.Properties

The string type is bound with the STRING built-in:

postulate String : Set
{—# BUILTIN STRING String #-}

Binding the string type lets you use string literals. The following primitive functions are available on strings (given
suitable bindings for Bool, Char and List):

primitive
primStringToList : String — List Char
primStringFromList : List Char — String
primStringAppend : String — String — String
primStringEquality : String — String — Bool
primShowString : String — String

String literals can be overloaded.

Converting to a list is injective, and its proof:

primitive
primStringToListInjective : V a b — primStringTolList a = primStringTolList b — a =
:Hb

[

can found in the Properties module.

3.2.12 Equality

module Agda.Builtin.Equality

The identity type can be bound to the built-in EQUALITY as follows

infix 4 =

data _= {a} {A : Set a} (x : A) : A — Set a where
refl : x = x

{—# BUILTIN EQUALITY _=_ #-}

This lets you use proofs of type Lhs = rhs in the rewrite construction.

Other variants of the identity type are also accepted as built-in:

3.2. Built-ins 27

https://hackage.haskell.org/package/base-4.8.1.0/docs/Data-Char.html

Agda User Manual, Release 2.6.1

data = {A : Set} : (
refl : (x : A) — X

w

y : A) — Set where
X

The type of primEraseEquality has to match the flavor of identity type.

module Agda.Builtin.Equality.Erase

Binding the built-in equality type also enables the primEraseEquality primitive:

primitive
primEraseEquality : V {a} {A : Set a} {xy : A} - x =y = x =y

The function takes a proof of an equality between two values x and y and stays stuck on it until x and y actually
become definitionally equal. Whenever that is the case, primEraseEquality e reducesto refl.

One use of primEraseEquality is to replace an equality proof computed using an expensive function (e.g. a
proof by reflection) by one which is trivially ref1 on the diagonal.

primTrustMe

module Agda.Builtin.TrustMe

From the primEraseEquality primitive, we can derive a notion of primTrustMe:

primTrustMe : V {a} {A : Set a} {xy : A} > X =y
primTrustMe {x = x} {y} = primEraseEquality unsafePrimTrustMe
where postulate unsafePrimTrustMe : x = vy

As can be seen from the type, primTrustMe must be used with the utmost care to avoid inconsistencies. What
makes it different from a postulate is that if x and y are actually definitionally equal, primTrustMe reduces to
refl. One use of primTrustMe is to lift the primitive boolean equality on built-in types like String to something
that returns a proof object:

egString : (a b : String) — Maybe (a = b)
egString a b = if primStringEquality a b
then just primTrustMe
else nothing

With this definition eqString "foo" "foo" computesto just refl.

3.2.13 Universe levels

module Agda.Primitive

Universe levels are also declared using BUILTIN pragmas. In contrast to the Agda . Builtin modules, the Agda.
Primitive module is auto-imported and thus it is not possible to change the level built-ins. For reference these are
the bindings:

postulate
Level : Set
lzero : Level
lsuc : Level — Level
UJ : Level — Level — Level

(continues on next page)

28 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

BUILTIN LEVEL Level #-
BUILTIN LEVELZERO lzero #-
—-# BUILTIN LEVELSUC 1lsuc #-

#-

}
}
}
BUILTIN LEVELMAX _LI_ }

3.2.14 Sized types

module Agda.Builtin.Size

The built-ins for sized types are different from other built-ins in that the names are defined by the BUILTIN pragma.
Hence, to bind the size primitives it is enough to write:

{—# BUILTIN SIZEUNIV SizeUniv #-} -—- SizeUniv : SizeUniv

{—# BUILTIN SIZE Size #-} —— Size : SizeUniv

{—# BUILTIN SIZELT Size<_ #-} -— Size<_ : ..Size — SizeUniv
{-# BUILTIN SIZESUC f_ #=-r - 1_ : Size — Size

{—# BUILTIN SIZEINF 00 #-} -—— o0 : Size

{—# BUILTIN SIZEMAX _LI°_ #-) - _L°_ : Size — Size — Size

3.2.15 Coinduction

module Agda.Builtin.Coinduction

The following built-ins are used for coinductive definitions:

postulate
oo : V {a} (A : Set a) — Set a
g :V {a} {A : Set a} - A — o0 A
b :V {a} {A : Set a} -+ c0o A — A

{-# BUILTIN INFINITY oo #-}

{—# BUILTIN SHARP . #-7

{—# BUILTIN FLAT b #-}

See Coinduction for more information.

3.2.16 10

module Agda.Builtin.IO

The sole purpose of binding the built-in IO type is to let Agda check that the main function has the right type (see
Compilers).

postulate IO : Set — Set
{—# BUILTIN IO IO #-}

3.2. Built-ins 29

Agda User Manual, Release 2.6.1

3.2.17 Literal overloading

module Agda.Builtin.FromNat
module Agda.Builtin.FromNeg
module Agda.Builtin.FromString

The machinery for overloading literals uses built-ins for the conversion functions.

3.2.18 Reflection

module Agda.Builtin.Reflection

The reflection machinery has built-in types for representing Agda programs. See Reflection for a detailed description.

3.2.19 Rewriting

The experimental and totally unsafe rewriting machinery (not to be confused with the rewrite construct) has a built-in
REWRITE for the rewriting relation:

postulate _—_ : V {a} {A : Set a} - A - A — Set a
{—# BUILTIN REWRITE _+_ #-}

This builtin is bound to the builtin equality type from Agda.Builtin.Equality in Agda.Builtin.
Equality.Rewrite.

3.2.20 Static values

The STATIC pragma can be used to mark definitions which should be normalised before compilation. The typical use
case for this is to mark the interpreter of an embedded language as STATIC:

’{—# STATIC <Name> #-} ‘

3.2.21 Strictness

’module Agda.Builtin.Strict ‘

There are two primitives for controlling evaluation order:

primitive
primForce :V {ab} (A : Set a} (B : A — Set b} (x : A) — (Vx — B x) — B x
primForcelLemma : V {a b} {A : Set a} {B : A — Set b} (x : A) (f : Vx — B x) —_
—primForce x £ = £ x

where _=__is the built-in equality. At compile-time primForce x f evaluates to £ x when x is in weak head
normal form (whnf), i.e. one of the following:

* a constructor application
* aliteral
* alambda abstraction

* atype constructor application (data or record type)

30 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

* afunction type
e auniverse (Set _)

Similarly primForceLemma x f, which lets you reason about programs using primForce, evaluates to refl
when x is in whnf. At run-time, primForce e f is compiled (by the GHC backend)to let x = e in seq x
(f x).

For example, consider the following function:

-— pow’” n a=a 2"

pow’ : Nat — Nat — Nat

pow’ zero a = a

pow’ (suc n) a = pow’ n (a + a)

There is a space leak here (both for compile-time and run-time evaluation), caused by unevaluated a + a thunks.
This problem can be fixed with primForce:

infixr 0 _S$S!_

$!'_ : VY {ab}) {A: Set a} {(B:A — Set b} - (Vx —-Bx) —-V=x — Bx
f $! x = primForce x f

-— pown a =a 2"

pow : Nat — Nat — Nat

pow zero a = a

pow (suc n) a = pow n $! a + a

3.3 Coinduction

The corecursive definitions below are accepted if the option ~——guardedness is active:

’{*# OPTIONS —--guardedness #-}

(An alternative approach is to use Sized Types.)

3.3.1 Coinductive Records

It is possible to define the type of infinite lists (or streams) of elements of some type A as follows,

record Stream (A : Set) : Set where
coinductive
field
hd : A
tl : Stream A

As opposed to inductive record types, we have to introduce the keyword coinductive before defining the fields
that constitute the record.

It is interesting to note that is not necessary to give an explicit constructor to the record type St ream A.

We can as well define bisimilarity (equivalence) of a pair of Stream A as a coinductive record.

record _~_ {A : Set} (xs : Stream A) (ys : Stream A) : Set where
coinductive
field

(continues on next page)

3.3. Coinduction 31

Agda User Manual, Release 2.6.1

(continued from previous page)

hd-~ : hd xs = hd ys
~ tl xs =~ tl ys

Using copatterns we can define a pair of functions on St ream such that one returns a St ream with the elements in
the even positions and the other the elements in odd positions.

even : V {A} — Stream A — Stream A
hd (even x) = hd x
tl (even x) = even (tl (tl x))

odd : V {A} — Stream A — Stream A
odd x = even (tl x)

split : V {A} — Stream A — Stream A X Stream A
split xs = even xs , odd xs

And merge a pair of St ream by interleaving their elements.

merge : V {A} — Stream A X Stream A — Stream A
hd (merge (fst , snd)) = hd fst
tl (merge (fst , snd)) = merge (snd , tl fst)

Finally, we can prove that split is the left inverse of merge.

merge—-split—-id : V {A} (xs : Stream A) — merge (split xs) & xs
hd-~ (merge-split-id _) = refl
tl-~ (merge-split-id xs) = merge-split-id (tl xs)

3.3.2 0Old Coinduction

Note: This is the old way of coinduction support in Agda. You are advised to use Coinductive Records instead.

To use coinduction it is recommended that you import the module Coinduction from the standard library. Coinductive
types can then be defined by labelling coinductive occurrences using the delay operator oo:

data ColN : Set where
zero : ColN
suc : oo CoN — ColN

The type oo A can be seen as a suspended computation of type A. It comes with delay and force functions:

g :V {a} {A : Set a} - A — o0 A
b :V {a} {A : Set a} —- o0 A — A

Values of coinductive types can be constructed using corecursion, which does not need to terminate, but has to be
productive. As an approximation to productivity the termination checker requires that corecursive definitions are
guarded by coinductive constructors. As an example the infinite “natural number” can be defined as follows:

inf : CoNN
inf = suc (f inf)

32 Chapter 3. Language Reference

https://wiki.portal.chalmers.se/agda/pmwiki.php?n=Libraries.StandardLibrary

Agda User Manual, Release 2.6.1

The check for guarded corecursion is integrated with the check for size-change termination, thus allowing interesting
combinations of inductive and coinductive types. We can for instance define the type of stream processors, along with
some functions:

—-— Infinite streams.

data Stream (A : Set) : Set where
o (x + A) (xs : oo (Stream A)) — Stream A

—-— A stream processor SP A B consumes elements of A and produces

—-— elements of B. It can only consume a finite number of A’s before

—-— producing a B.

data SP (A B : Set) : Set where
get : (f A — SP AB) —- SP AB
put : (b : B) (sp : oo (SP A B)) — SP A B

—— The function eat is defined by an outer corecursion into Stream B
—-— and an inner recursion on SP A B.

eat : V {A B} —- SP A B — Stream A — Stream B
eat (get f) (a = as) eat (f a) (b as)
eat (put b sp) as =b = f eat (b sp) as

—-— Composition of stream processors.

o :YV{ABC} -—SPBC—SPAB — SPAC
get f; o put x sp, = f1 x o b sp»
put x spi1 © sp2 = put x (f (b sp1 o spz2))

sp1 o get f, get (A x — sp1 o f, x)

It is also possible to define “coinductive families”. It is recommended not to use the delay constructor (f_) in a
constructor’s index expressions. The following definition of equality between coinductive “natural numbers” is dis-
couraged:

data _~’_ : CoN — ColN — Set where
zero : zero =’ zero
suc : V {mn} - oo (m =" n) — suc (f m) =" suc (§ n)

The recommended definition is the following one:

data _~ : ColN — ColN — Set where
Zero : zero) zero
suc : V {mn} - 00 (bm~a~bn — sucm~ suc n

The current implementation of coinductive types comes with some limitations.

3.3. Coinduction 33

http://article.gmane.org/gmane.comp.lang.agda/763/

Agda User Manual, Release 2.6.1

3.4 Copatterns

Consider the following record:

record Enumeration (A : Set) : Set where
constructor enumeration
field
start : A
forward : A — A

backward : A — A

This gives an interface that allows us to move along the elements of a data type A.

For example, we can get the “third” element of a type A:

open Enumeration

3rd : {A : Set} — Enumeration A — A
3rd e = forward e (forward e (forward e (start e))

Or we can go back 2 positions starting from a given a:

backward-2 : {A : Set} — Enumeration A — A — A
backward-2 e a = backward (backward a)
where

open Enumeration e

Now, we want to use these methods on natural numbers. For this, we need a record of type Enumeration Nat.
Without copatterns, we would specify all the fields in a single expression:

open Enumeration

enum-Nat : Enumeration Nat
enum-Nat = record {
start =0
; forward = suc

; backward = pred
}

where
pred : Nat — Nat
pred zero = zero
pred (suc x) = x

test; : 3rd enum—-Nat = 3
test, = refl

M1l
w

test, : backward-2 enum-Nat 5
test, = refl

Note that if we want to use automated case-splitting and pattern matching to implement one of the fields, we need to
do so in a separate definition.

With copatterns, we can define the fields of a record as separate declarations, in the same way that we would give
different cases for a function:

open Enumeration

(continues on next page)

34 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

enum-Nat : Enumeration Nat
start enum-Nat = 0
forward enum-Nat n = suc n
backward enum-Nat zero = zero
backward enum-Nat (suc n)

[}
o}

The resulting behaviour is the same in both cases:

test: : 3rd enum-Nat = 3
test; = refl

test, : backward-2 enum-Nat 5 = 3
test, = refl

3.4.1 Copatterns in function definitions

In fact, we do not need to start at 0. We can allow the user to specify the starting element.

Without copatterns, we just add the extra argument to the function declaration:

open Enumeration

enum-Nat : Nat — Enumeration Nat
enum-Nat initial = record {
start = initial
; forward = suc
; backward = pred
}
where
pred : Nat — Nat
pred zero = zero
pred (suc x) = x
test: : 3rd (enum-Nat 10) = 13

test, = refl

With copatterns, the function argument must be repeated once for each field in the record:

open Enumeration

enum-Nat : Nat — Enumeration Nat

start (enum—-Nat initial) = initial
forward (enum—-Nat _) n = suc n
backward (enum-Nat _) zero = zero
backward (enum-Nat _) (suc n) = n

3.4. Copatterns

35

Agda User Manual, Release 2.6.1

3.4.2 Mixing patterns and co-patterns

Instead of allowing an arbitrary value, we want to limit the user to two choices: 0 or 42.

Without copatterns, we would need an auxiliary definition to choose which value to start with based on the user-
provided flag:

open Enumeration

if _then_else_ : {A : Set} — Bool - A — A — A
if true then x else _ = x
if false then _ else y =y
enum-Nat : Bool — Enumeration Nat
enum—-Nat ahead = record {
start = if ahead then 42 else 0
; forward = suc
; backward = pred

}

where
pred : Nat — Nat
pred zero = zero
pred (suc x) = x

With copatterns, we can do the case analysis directly by pattern matching:

open Enumeration

enum-Nat : Bool — Enumeration Nat
start (enum—-Nat true) = 42

start (enum—-Nat false) = 0
forward (enum-Nat _) n = suc n
backward (enum-Nat _) zero = zero
backward (enum-Nat _) (suc n) = n

Tip: When using copatterns to define an element of a record type, the fields of the record must be in scope. In the
examples above, we use open Enumeration to bring the fields of the record into scope.

Consider the first example:

enum-Nat : Enumeration Nat

start enum-Nat = 0

forward enum-Nat n = suc n
backward enum-Nat zero = zero
backward enum-Nat (suc n) = n

If the fields of the Enumerat ion record are not in scope (in particular, the start field), then Agda will not be able
to figure out what the first copattern means:

Could not parse the left-hand side start enum-Nat

Operators used in the grammar:

None

when scope checking the left-hand side start enum-Nat in the
definition of enum-Nat

The solution is to open the record before using its fields:

36 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

open Enumeration

enum-Nat : Enumeration Nat
start enum-Nat = 0
forward enum-Nat n = suc
backward enum-Nat zero zZero
backward enum-Nat (suc n) = n

o]

3.5 Core language

Note: This is a stub

data Term = Var Int Elims
| Def QOName Elims -— ~ @f es@, possibly a delta/iota-redex
| Con ConHead Args - @c vs@
| Lam ArgInfo (Abs Term) —— Terms are beta normal. Relevance 1is_
—lignored
| Lit Literal
Pi (Dom Type) (Abs Type) - dependent or non-dependent function,,
—space
| Sort Sort
| Level Level
| MetaV MetaId Elims
| DontCare Term
-— » Irrelevant stuff in relevant position, but created
- in an irrelevant context.

3.6 Cubical

The Cubical mode extends Agda with a variety of features from Cubical Type Theory. In particular, computational
univalence and higher inductive types which hence gives computational meaning to Homotopy Type Theory and
Univalent Foundations. The version of Cubical Type Theory that Agda implements is a variation of the CCHM Cubical
Type Theory where the Kan composition operations are decomposed into homogeneous composition and generalized
transport. This is what makes the general schema for higher inductive types work, following the CHM paper.

To use the cubical mode Agda needs to be run with the ——cubical command-line-option or with { —# OPTIONS
—-—cubical #-} atthe top of the file.

The cubical mode adds the following features to Agda:
1. An interval type and path types

. Generalized transport (transp)

. Partial elements

. Homogeneous composition (hcomp)

. Glue types

. Higher inductive types

N O e AW

. Cubical identity types

3.5. Core language 37

https://homotopytypetheory.org/
https://homotopytypetheory.org/

Agda User Manual, Release 2.6.1

There is a standard agda/cubical library for Cubical Agda available at https://github.com/agda/cubical. This
documentation uses the naming conventions of this library, for a detailed list of all of the built-in Cubical Agda files
and primitives see Appendix: Cubical Agda primitives. The main design choices of the core part of the library are
explained in https://homotopytypetheory.org/2018/12/06/cubical-agda/ (lagda rendered version: https://ice 1000.org/
lagda/Cubical AgdaLiterate.html).

The recommended way to get access to the Cubical primitives is to add the following to the top of a file (this assumes
that the agda/cubical library is installed and visible to Agda).

{—# OPTIONS —-cubical #-}

open import Cubical.Core.Everything

For detailed install instructions for agda/cubical see: https://github.com/agda/cubical/blob/master/INSTALL.md.
In order to make this library visible to Agda add /path/to/cubical/cubical.agda-1ib to .agda/
libraries and cubical to .agda/defaults (where path/to is the absolute path to where the agda/
cubical library has been installed). For details of Agda’s library management see Library Management.

Expert users who do not want to rely on agda/cubical can just add the relevant import statements at the top of
their file (for details see Appendix: Cubical Agda primitives). However, for beginners it is recommended that one uses
at least the core part of the agda/cubical library.

There is also an older version of the library available at https://github.com/Saizan/cubical-demo/. However this is
relying on deprecated features and is not recommended to use.

3.6.1 The interval and path types

The key idea of Cubical Type Theory is to add an interval type I : Setw (the reason this is in Setw is because it
doesn’t support the t ransp and hcomp operations). A variable i : I intuitively corresponds to a point the real
unit interval. In an empty context, there are only two values of type I: the two endpoints of the interval, 10 and 1 1.

i0 I
i1 I

Elements of the interval form a De Morgan algebra, with minimum (A), maximum (V) and negation (~).

N_ I - I — 1
V_ : I - I — I
~ I —- I

All the properties of De Morgan algebras hold definitionally. The endpoints of the interval 10 and i1 are the bottom
and top elements, respectively.

i0 Vv i =i

i Vv il =il

iV J =3V i
i0 A i = 10

il A i =i

i A J = J A1
~ (~ 1) = 1i

i0 =~ il

~ 1V 3 =~1A~73
~ (1 ANJ) =~1V~]

The core idea of Homotopy Type Theory and Univalent Foundations is a correspondence between paths (as in topol-
ogy) and (proof-relevant) equalities (as in Martin-Lof’s identity type). This correspondence is taken very literally in

38 Chapter 3. Language Reference

https://github.com/agda/cubical
https://homotopytypetheory.org/2018/12/06/cubical-agda/
https://ice1000.org/lagda/CubicalAgdaLiterate.html
https://ice1000.org/lagda/CubicalAgdaLiterate.html
https://github.com/agda/cubical/blob/master/INSTALL.md
https://github.com/Saizan/cubical-demo/
https://en.wikipedia.org/wiki/Unit_interval
https://en.wikipedia.org/wiki/Unit_interval
https://en.wikipedia.org/wiki/De_Morgan_algebra

Agda User Manual, Release 2.6.1

Cubical Agda where a path in a type A is represented like a function out of the interval, I — A. A path type is in fact
a special case of the more general built-in heterogeneous path types:

—-— PathP :V ([} (A : I — Set [) — A 10 — A il — Set [

—— Non dependent path types
Path : V {f} (A : Set) - A — A — Set [
Path A a b = PathP (A _ — A) a b

The central notion of equality in Cubical Agda is hence heterogeneous equality (in the sense of PathOver in HoTT).
To define paths we use A-abstractions and to apply them we use regular application. For example, this is the definition
of the constant path (or proof of reflexivity):

refl : V {[} {A : Set [} {x : A} — Path A x x
refl {x = x} = A1 — x

Although they use the same syntax, a path is not exactly the same as a function. For example, the following is not
valid:

refl : V {[} {A : Set [} {x : A} — Path A x x
refl {(x = x} =X (1 : I) — x

Because of the intuition that paths correspond to equality PathP (A i — A) x vy gets printed as x = y when
A does not mention i. By iterating the path type we can define squares, cubes, and higher cubes in Agda, making the
type theory cubical. For example a square in A is built out of 4 points and 4 lines:

Square : V {[} {A : Set [} {x0 x1 y0 yl : A} —
x0 = x1 - y0 = yl - x0 = y0 — x1 = yl — Set [
Square p g r s = PathP (A i > p i1 =g i) r s

Viewing equalities as functions out of the interval makes it possible to do a lot of equality reasoning in a very direct
way:

sym : V {[} {A : Set [} {xy : A} - X=y >y =X

symp =\A1i — p (~ 1)
cong : V {[} {A : Set [} {xy : A} {(B:A —>Set [} (f: (a:A) — Ba (p:x=y)
— PathP (A1 — B (p i)) (f x) (f vy)

cong f pi=1f (pi)

Because of the way functions compute these satisfy some new definitional equalities compared to the standard Agda
definitions:

symInv : V {[} {A : Set [} {xy : A} (p : X =y) — sym (sym p) = p
symInv p = refl

congId : V {[} {A : Set [} {xy : A} (p: X =vy) —»cong (Aa > a) p=p
congIld p = refl

congComp : V {f} {ABC : Set [} (f :A —-B) (g :B —=>C) {xy A} (p:xXx=y) —
cong (A a — g (f a)) p = cong g (cong f p)
congComp f g p = refl

Path types also lets us prove new things are not provable in standard Agda, for example function extensionality (point-
wise equal functions are equal) has an extremely simple proof:

3.6. Cubical 39

Agda User Manual, Release 2.6.1

funExt : V {[} {A : Set [} {B : A — Set [} {f g : (x : A) - B x} —
((x = A) = fx=gx) - f=g
funExt p i x = p x 1

3.6.2 Transport

While path types are great for reasoning about equality they don’t let us transport along paths between types or even
compose paths, which in particular means that we cannot yet prove the induction principle for paths. In order to
remedy this we also have a built-in (generalized) transport operation and homogeneous composition operations. The
transport operation is generalized in the sense that it lets us specify where it is the identity function.

transp : V {/} (A : I — Set () (r : I) (a : A i0) — A il

There is an additional side condition to be satisfied for transp A r a to type-check, which is that A has to be
constant on r. This means that A should be a constant function whenever the constraint r = 11 is satisfied. This side
condition is vacuously true when r is i0, so there is nothing to check when writing transp A 10 a. However
when r is equal to 11 the t ransp function will compute as the identity function.

transp A il a = a

This requires A to be constant for it to be well-typed.

We can use t ransp to define regular transport:

transport : V {[} {AB : Set [} = A =B —- A — B
transport p a = transp (A i — p i) i0 a

By combining the transport and min operations we can define the induction principle for paths:

J :V {{} {A : Set [} {x : A} (P : Vy > x =y — Set [)
(d : P x refl) {y : A} (p : x =vY)
— P yp
J P dp = transport (A1 - P (p i) (A J —p (L A J))) d

One subtle difference between paths and the propositional equality type of Agda is that the computation rule for J
does not hold definitionally. If J is defined using pattern-matching as in the Agda standard library then this holds,
however as the path types are not inductively defined this does not hold for the above definition of J. In particular,
transport in a constant family is only the identity function up to a path which implies that the computation rule for J
only holds up to a path:

transportRefl : V {[} {A : Set [} (x : A) — transport refl x = x

transportRefl {A = A} x 1 = transp (A _ — A) 1 x

JRefl : V {[} {A : Set [} {x : A} (P : V — x =y — Set [)
(d : P x refl) - J P d refl =

JRefl P d = transportRefl d

Yy
d

Internally in Agda the t ransp operation computes by cases on the type, so for example for Y-types it is computed
elementwise. For path types it is however not yet possible to provide the computation rule as we need some way to
remember the endpoints of the path after transporting it. Furthermore, this must work for arbitrary higher dimensional
cubes (as we can iterate the path types). For this we introduce the “homogeneous composition operations” (hcomp)
that generalize binary composition of paths to n-ary composition of higher dimensional cubes.

40 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

3.6.3 Partial elements

In order to describe the homogeneous composition operations we need to be able to write partially specified n-
dimensional cubes (i.e. cubes where some faces are missing). Given an element of the interval r : I there is
a predicate IsOne which represents the constraint r = 1i1. This comes with a proof that i1 is in fact equal to 11
called 1=1 : IsOne il. We use Greek letters like ¢ or v when such an r should be thought of as being in the
domain of IsOne.

Using this we introduce a type of partial elements called Partial ¢ A, thisis aspecial versionof IsOne ¢ — A
with a more extensional judgmental equality (two elements of Partial ¢ A are considered equal if they represent
the same subcube, so the faces of the cubes can for example be given in different order and the two elements will still
be considered the same). The idea is that Partial ¢ A isthe type of cubes in A that are only defined when IsOne
. There is also a dependent version of this called PartialP ¢ A which allows A to be defined only when IsOne

@.

Partial : V {[} — I — Set [— Setw

PartialP : V {[} — (¢ : I) — Partial ¢ (Set [) — Setw

There is a new form of pattern matching that can be used to introduce partial elements:

partialBool : V i — Partial (i V ~ i) Bool

partialBool i (i = i0) = true
partialBool i (i = il) = false
The term partialBool i should be thought of a boolean with different values when (1 = 10) and (i = 1i1).

Terms of type Partial ¢ A can also be introduced using a Pattern matching lambda.

partialBool' : V i — Partial (i V ~ i) Bool
partialBool' i = A { (i = 10) — true
; (1 =11) — false }

When the cases overlap they must agree (note that the order of the cases doesn’t have to match the interval formula
exactly):

partialBool'' : V i j — Partial (~ i V 1 V (i A j)) Bool
partialBool'' i J = A { (i = 1il) — true

; (1 =11) (jJ = il) — true

; (1 =10) — false }

Furthermore IsOne 10 is actually absurd.

empty : {A : Set} — Partial i0 A
empty = A { () }

Cubical Agda also has cubical subtypes as in the CCHM type theory:

=1 V¥V {[} (A : 8Set [) (p : I) (u : Partial ¢ A) — Setw

Al e~ ul] =Sub A ¢pu

Atermv : A [¢ + u] should be thought of as a term of type A which is definitionally equal tou : A
when IsOne ¢ issatisfied. Anytermu : Acanbeseenasantermof 2 [¢ +— u] which agrees with itself
on :

inS : V {[} {A : Set [} {¢ : I} (u: A — A [¢~ (A — u)]

One can also forget that a partial element agrees with u on ¢:

3.6. Cubical 41

Agda User Manual, Release 2.6.1

outS : V {[} {A : Set [} {¢ : I} {u : Partial o A} = A [@ — u]l — A

They satisfy the following equalities:

outS (inS a) = a

inS {u = u} (outS {u = u} a) = a

outS {¢ = il} {u} _ = u 1=1

Note that givena : A [¢ — u]Janda : IsOne ¢, itis not the case that outS a = u «; however,
underneath the pattern binding (¢ = il),onehasoutS a = u 1=1.

With all of this cubical infrastructure we can now describe the hcomp operations.

3.6.4 Homogeneous composition

The homogeneous composition operations generalize binary composition of paths so that we can compose multiple
composable cubes.

hcomp : V {[} {A : Set [} {¢ : I} (u : I — Partial ¢ A) (u0 : A) — A

When calling hcomp {¢ = ¢} u u0 Agda makes sure that u0 agrees with u 10 on . The idea is that u0 is
the base and u specifies the sides of an open box. This is hence an open (higher dimensional) cube where the side
opposite of u0 is missing. The hcomp operation then gives us the missing side opposite of u0. For example binary
composition of paths can be written as:

compPath : V {f} {A : Set [} {x yz : A} > Xx=y >y =12z — X =2
compPath {x = x} p g i = hcomp (A j — A { (i = 10) — x
i (1 =11) — g 3 b
(p 1)
Pictorially we are givenp : x = yandg : vy = z,and the composite of the two paths is obtained by com-

puting the missing lid of this open square:

In the drawing the direction i goes left-to-right and j goes bottom-to-top. As we are constructing a path from x to
z along i we have 1 : T in the context already and we put p i as bottom. The direction j that we are doing the
composition in is abstracted in the first argument to hcomp.

Note that the partial element * u" does not have to specify all the sides of the open box, giving more sides simply gives
you more control on the result of * hcomp " . For example if we omitthe * (i = i0) — x' side in the definition
of “compPath” we still get a valid term of type " A" . However, that term would reduce to “hcomp (\ J — \
{ () }) x> when i = 10" and so that definition would not build a path that starts from " x".

We can also define homogeneous filling of cubes as

hfill : V {[} {A : Set [} {o + I}
(u: Vi — Partial o A) (u0 : A [¢ — u 10 1)

(continues on next page)

42 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

(1 : I) — A
hfill {¢ = ¢} u u0 i = hcomp (A J — A { (¢ = 11) — u (1 A J) 1=1
; (i =10) — outS ul })
(outS u0)

When 1 is 10 thisis u0O and when 1 is i1 thisishcomp u u0. This can hence be seen as giving us the interior of an
open box. In the special case of the square above hfi1l1 gives us a direct cubical proof that composing p with ref1l
is p.

compPathRefl : V {[} {A : Set [} {xy : A} (p : x = vy) — compPath p refl = p
compPathRefl {x = x} {y =y} p J i =nhfill (A _ — A { (i = i0) — x
i (1 =11) = vy })

3.6.5 Glue types

In order to be able to prove the univalence theorem we also have to add “Glue” types. These lets us turn equivalences
between types into paths between types. An equivalence of types A and B is defined asamap £ : A — B such
that its fibers are contractible.

fiber : V {[} {A B : Set [} (f : A — B) (y : B) — Set [

fiber {A = A} fy=2X[x €A] fx \%
isContr : V {[} — Set [— Set [
isContr A = ¥[x € A] WVy — x =vV)
record isEquiv {/} {A B : Set [} (f : A — B) : Set [where
field
equiv-proof : (y : B) — isContr (fiber f y)
} (A B : Set [) — Set [

o~ VY {(
A~B=X[f € (A - B)] (isEquiv f)

The simplest example of an equivalence is the identity function.

idfun : V {{} — (A : Set [) — A — A
idfun _ x = x

idIsEquiv : V {[} (A : Set [) — isEquiv (idfun A)
equiv-proof (idIsEquiv A) y =
((y , refl) , Xz i — z .snd (~ 1) , A J — z .snd (~ i V J))

idEquiv : V {[} (A : Set [) — A ~ A
idEquiv A = (idfun A , idIsEquiv A)

An important special case of equivalent types are isomorphic types (i.e. types with maps going back and forth which
are mutually inverse): https://github.com/agda/cubical/blob/master/Cubical/Foundations/Isomorphism.agda.

As everything has to work up to higher dimensions the Glue types take a partial family of types that are equivalent to
the base type A:

Glue : V {f ('} (A : Set [) {¢p : I}
— Partial ¢ (U[T € Set ('] T ~ A) — Set ['

3.6. Cubical 43

https://github.com/agda/cubical/blob/master/Cubical/Foundations/Isomorphism.agda

Agda User Manual, Release 2.6.1

These come with a constructor and eliminator:

glue : V {[('} {A : Set [} {p : I} {Te : Partial ¢ (X[T € Set ('] T ~ A)}
— PartialP ¢ T —+ A — Glue A Te

unglue : V {[['} {A : Set [} (¢ : I) {Te : Partial ¢ (X[T € Set ('] T ~ A)}
— Glue A Te — A

Using Glue types we can turn an equivalence of types into a path as follows:

ua : V {[} {AB : Set [} - A~B — A =B
ua {_} {A} {B} e i = Glue B (A { (1 = 10)
; (1= 11

(A, e)

H
— (B , idEquiv B) })

The idea is that we glue A together with B when 1 = i0 using e and B with itself when i = 11 using the identity
equivalence. This hence gives us the key part of univalence: a function for turning equivalences into paths. The other
part of univalence is that this map itself is an equivalence which follows from the computation rule for ua:

vaf : V {[} {AB : Set [} (e : A ~B) (x : A) — transport (ua e) x = e .fst x
uaﬂ e x = transportRefl (e .fst x)

Transporting along the path that we get from applying ua to an equivalence is hence the same as applying the equiva-
lence. This is what makes it possible to use the univalence axiom computationally in Cubical Agda: we can package
up our equivalences as paths, do equality reasoning using these paths, and in the end transport along the paths in order
to compute with the equivalences.

We have the following equalities:

Glue A {il} Te = Te 1=1 .fst

unglue ¢ (glue t a) = a

glue (\ { (¢ = 11) => g}) (unglue ¢ g) =g
unglue il {Te} g = Te 1=1 .snd .fst g

glue {p = 11} t a = t 1=1

For more results about Glue types and univalence see https://github.com/agda/cubical/blob/master/Cubical/Core/Glue.
agda and https://github.com/agda/cubical/blob/master/Cubical/Foundations/Univalence.agda. For some examples of
what can be done with this for working with binary and unary numbers see https://github.com/agda/cubical/blob/
master/Cubical/Data/BinNat/BinNat.agda.

3.6.6 Higher inductive types

Cubical Agda also lets us directly define higher inductive types as datatypes with path constructors. For example the
circle and torus can be defined as:

data S' : Set where

base : S?
loop : base = base
data Torus : Set where
point : Torus
linel : point = point
line2 : point = point
square : PathP (A 1 — linel i = linel i) line2 line?2

44 Chapter 3. Language Reference

https://github.com/agda/cubical/blob/master/Cubical/Core/Glue.agda
https://github.com/agda/cubical/blob/master/Cubical/Core/Glue.agda
https://github.com/agda/cubical/blob/master/Cubical/Foundations/Univalence.agda
https://github.com/agda/cubical/blob/master/Cubical/Data/BinNat/BinNat.agda
https://github.com/agda/cubical/blob/master/Cubical/Data/BinNat/BinNat.agda
https://en.wikipedia.org/wiki/Torus

Agda User Manual, Release 2.6.1

Functions out of higher inductive types can then be defined using pattern-matching:

t2c : Torus — S' x S!

t2c point (base , base)
t2c (linel 1) = (loop i , base)
t2c (line2 j) = (base , loop 7J)
t2c (square i1 j) = (loop i , loop jJj)

c2t : s' x s — Torus

c2t (base , base) = point

c2t (loop 1 , base) = linel 1
c2t (base , loop j) = line2 j
c2t (loop 1 , loop j) = square i j

When giving the cases for the path and square constructors we have to make sure that the function maps the boundary
to the right thing. For instance the following definition does not pass Agda’s typechecker as the boundary of the last
case does not match up with the expected boundary of the square constructor (as the 1inel and 1ine2 cases are
mixed up).

c2t_bad : st x st — Torus

c2t_bad (base , base) = point
c2t_bad (loop i , base) = line2 i
c2t_bad (base , loop j) = linel j
c2t_bad (loop i , loop j) = square i Jj

Functions defined by pattern-matching on higher inductive types compute definitionally, for all constructors.

c2t-t2c : V (t : Torus) — c2t (t2c t) = t
c2t-t2c point = refl

c2t-t2c (linel _) = refl

c2t—-t2c (line2 _) = refl

c2t-t2c (square _ _) = refl

t2c-c2t : V (p : st x sty — t2c (c2t p) = p
t2c-c2t (base , base) = refl

t2c—-c2t (base , loop _) = refl

t2c-c2t (loop _ , base) = refl

t2c-c2t (loop _ , loop _) = refl

By turning this isomorphism into an equivalence we get a direct proof that the torus is equal to two circles.

Torus=S'xs’ : Torus = s! x g!

Torus=S'xS' = isoToPath (iso t2c c2t t2c-c2t c2t-t2c)

Cubical Agda also supports parameterized and recursive higher inductive types, for example propositional truncation
(squash types) is defined as:

data |_|| {f} (A : Set [) : Set [where
|| =2 =&
squash : V (xy : |2]) - x =y

isProp : V {[} — Set [— Set [
isProp A = (x y ¢ A) = X =Y

recPropTrunc : V {[} {A : Set [} {P : Set [} — isProp P — (A — P) — ||A | — P
recPropTrunc Pprop f | x | = f x
recPropTrunc Pprop f (squash x y i) =

Pprop (recPropTrunc Pprop f x) (recPropTrunc Pprop f y) i

3.6. Cubical 45

Agda User Manual, Release 2.6.1

For many more examples of higher inductive types see: https://github.com/agda/cubical/tree/master/Cubical/HITs.

3.6.7 Cubical identity types and computational HoTT/UF

As mentioned above the computation rule for J does not hold definitionally for path types. Cubical Agda solves
this by introducing a cubical identity type. The https://github.com/agda/cubical/blob/master/Cubical/Core/Id.agda file
exports all of the primitives for this type, including the notation _=__ and a J eliminator that computes definitionally
onrefl.

The cubical identity type and the path type are equivalent, so all of the results for one can be transported to the other
one (using univalence). Using this we have implemented an interface to HoTT/UF in https://github.com/agda/cubical/
blob/master/Cubical/Foundations/HoTT-UF.agda which provides the user with the key primitives of Homotopy Type
Theory and Univalent Foundations implemented using cubical primitives under the hood. This hence gives an axiom
free version of HoTT/UF which computes properly.

module Cubical.Core.HoTT-UF where

open import Cubical.Core.Id public

using (_=_ —— The identity type.
; refl —-— Unfortunately, pattern matching on refl is not,,
—available.
;o J —-— Until it is, you have to use the induction principle J.
; transport —-— As in the HoTT Book.
;oap
14 _._
.-
14 —
P =) -— Standard equational reasoning.
; _m
; funkExt —-— Function extensionality

-— (can also be derived from univalence).

P —-— Sum type. Needed to define contractible types,_
—equivalences

HE— —— and univalence.

; pri —-— The eta rule is available.

;7 Pr2

; 1sProp —— The usual notions of proposition, contractible type, set.

; isContr

; 1sSet

; isEquiv -— A map with contractible fibers

—-— (Voevodsky's version of the notion).

HE- —-— The type of equivalences between two given types.

; EquivContr -— A formulation of univalence.

P —-- Propositional truncation.

i -— Map into the propositional truncation.

i Illl-isProp -— A truncated type is a proposition.

; |lll-recursion -- Non-dependent elimination.

; |lll-induction —-— Dependent elimination.

In order to get access to only the HoOTT/UF primitives start a file as follows:

46 Chapter 3. Language Reference

https://github.com/agda/cubical/tree/master/Cubical/HITs
https://github.com/agda/cubical/blob/master/Cubical/Core/Id.agda
https://github.com/agda/cubical/blob/master/Cubical/Foundations/HoTT-UF.agda
https://github.com/agda/cubical/blob/master/Cubical/Foundations/HoTT-UF.agda

Agda User Manual, Release 2.6.1

{—# OPTIONS —--cubical #-}

open import Cubical.Core.HoTT-UF

However, even though this interface exists it is still recommended that one uses the cubical identity types unless one
really need J to compute on ref1. The reason for this is that the syntax for path types does not work for the identity
types, making many proofs more involved as the only way to reason about them is using J. Furthermore, the path
types satisfy many useful definitional equalities that the identity types don’t.

3.6.8 References

Cyril Cohen, Thierry Coquand, Simon Huber and Anders Mortberg; “Cubical Type Theory: a constructive
interpretation of the univalence axiom”.

Thierry Coquand, Simon Huber, Anders Mortberg; “On Higher Inductive Types in Cubical Type Theory”.

3.6.9 Appendix: Cubical Agda primitives

The Cubical Agda primitives and internals are exported by a series of files found in the 1ib/prim/Agda/
Builtin/Cubical directory of Agda. The agda/cubical library exports all of these primitives with the names
used throughout this document. Experts might find it useful to know what is actually exported as there are quite a few
primitives available that are not really exported by agda/cubical, so the goal of this section is to list the contents
of these files. However, for regular users and beginners the agda/cubical library should be sufficient and this
section can safely be ignored.

The key file with primitives is Agda.Primitive.Cubical. It exports the following BUILTIN, primitives and
postulates:

{—# BUILTIN INTERVAL I #-}) —— I : Setw
{—# BUILTIN IZERO io #-}
#-}

{—# BUILTIN IONE i1

infix 30 primINeg
infixr 20 primIMin primIMax

primitive
primIMin — I _A_
— I

L1l

I
primIMax : I
primINeg I

{-# BUILTIN ISONE IsOne #-} —-— IsOne : I — Setw

postulate
itIsOne : IsOne il -— 1=1
IsOnel : V i j — IsOne i — IsOne (primIMax i)
IsOne2 : V i j — IsOne j — IsOne (primIMax i j)

{—# BUILTIN ITISONE itIsOne #-}
{—# BUILTIN ISONEI IsOnel #-}
{—# BUILTIN ISONE2 IsOne2 #-}
{—# BUILTIN PARTIAL Partial #-}
{—# BUILTIN PARTIALP PartialP #-}

postulate

(continues on next page)

3.6. Cubical 47

https://arxiv.org/abs/1611.02108
https://arxiv.org/abs/1611.02108
https://arxiv.org/abs/1802.01170

Agda User Manual, Release 2.6.1

(continued from previous page)

isOneEmpty : V {a} {A : Partial i0 (Set a)} — PartialP i0 A
{—# BUILTIN ISONEEMPTY isOneEmpty #-}

primitive
primPOr : V {a} (i j : I) {A : Partial (primIMax i j) (Set a)}
— PartialP 1 (A z — A (IsOnel i j z)) — PartialP j (A z — A (IsOne2 1 7j_,
—z))
— PartialP (primIMax i j) A

—-— Computes in terms of primHComp and primTransp
primComp : V {a} (A : (i : I) — Set (a i)) (¢ : I) — (Vv i — Partial ¢ (A i)) —
—~(a : A 10) — A 11

—

syntax primPOr p gu t = [p—= u, g~ t]
primitive
primTransp : V {a} (A : (1 : I) — Set (a i)) (p : I) — (a : A 10) — A i1l

primHComp : V {a} {A : Set a} {¢ : I} — (V i — Partial ¢ A) — A — A

The Path types are exported by Agda.Builtin.Cubical.Path:

postulate
PathP : V {[} (A : I — Set [) — A i0 — A il — Set [

{—# BUILTIN PATHP PathP #-}
infix 4 _=_

= :V {[} (A : Set [} - A —- A — Set [
= (A = A} = PathP (A _ — A)

{—# BUILTIN PATH

#-}

The Cubical subtypes are exported by Agda.Builtin.Cubical. Sub:

{—# BUILTIN SUB Sub #-}

postulate
inc : V {[} {A : Set [} {p} (x : A) — Sub A ¢ (A _ — x)

{—# BUILTIN SUBIN inS #-}

primitive
primSubOut : V {[} {A : Set [} {¢ : I} {u : Partial ¢ A} — Sub _ ¢ u — A

The Glue types are exported by Agda.Builtin.Cubical.Glue:

record isEquiv {/ ['} {A : Set [} {B : Set ('} (f : A — B) : Set ([U [') where
field
equiv-proof : (y : B) — isContr (fiber f y)

infix 4 _~_

o~ NN {[['} (A : Set [) (B : Set (') — Set (L U [")
A~B=%Y (A~ B) \ f — (isEquiv f)

equivFun : V {[('} {A : Set [} {B : Set ['} - A ~B — A — B
equivFun e = fst e

(continues on next page)

48 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

equivProof : V {la 1t} (T : Set la) (A : Set 1t) — (w : T ~ A) — (a : A)
— V ¥ — (Partial ¥ (fiber (w .fst) a)) — fiber (w .fst) a
equivProof A B w a ¥ fb = contr' {A = fiber (w .fst) a} (w .snd .equiv-proof a) % fb
where

contr' : V {[} {A : Set [} — isContr A — (¢ : I) — (u : Partial ¢ A) — A
contr' {A =A} (¢, p) ¢ u=hcomp (A1 = A { (p =1il) — p (u 1l=1) 1
; (p =10) — c }) ¢
{-# BUILTIN EQUIV o~ #-}
{—# BUILTIN EQUIVFUN equivFun #-}
{—# BUILTIN EQUIVPROOF equivProof #-)}
primitive
primGlue YV {[('} (A : Set [) {p : I}
— (T : Partial ¢ (Set [')) — (e : PartialP ¢ (A o — T o ~ A))
— Set ['
prim~glue YV {[('} {A : Set [} {p : I}
— {T : Partial ¢ (Set (')} — {e : PartialP ¢ (A o - T o =~ A)}
— PartialP ¢ T — A — primGlue A T e
prim*unglue : V {[['} {A : Set [} {¢ : I}
— {T : Partial ¢ (Set (')} — {e : PartialP ¢ (A o - T o ~ A)}
— primGlue A T e — A
primFaceForall : (I — I) — I

—-— pathToEquiv proves that transport is an equivalence (for details
—-— see Agda.Builtin.Cubical.Glue). This is needed internally.
{—# BUILTIN PATHTOEQUIV pathToEquiv #-}

Note that the Glue types are uncurried in agda/cubical to make them more pleasant to use:

Glue : V {L ['} (A : Set [) {¢ : I}
— (Te : Partial ¢ (X[T € Set ['] T =~ A))
— Set ['
Glue A Te = primGlue A (A x — Te x .fst) (A x — Te x .snd)

The Agda.Builtin.Cubical.Id exports the cubical identity types:

postulate
Id : V {[} {A : Set [} - A — A — Set [

{—# BUILTIN ID Id #-}
{—# BUILTIN CONID conid #-}
primitive

primDepIMin _

primIdFace : V {[} {A : Set [} {xy : A} - Idxy — I
primIdPath : V {[} {A : Set [} {xy : A} - Idxy — x =y

primitive
primIdJd : V {[['} {A : Set [} {x : A} (P : Vy - Idxy — Set (') —
P x (conid i1l (A i — x)) — V {y} (p : Idxvy) — P yp

primitive
primIdElim : V {a c} {A : Set a} {x : A}
(C: (y : A) - Idxy — Set ¢c) —
(o = I) (y : Al o= (A_— x) 1)

(continues on next page)

3.6. Cubical 49

Agda User Manual, Release 2.6.1

(continued from previous page)

(w (x =outS y) [¢ = (A { (¢ =1il) = \ _ = x}) 1) —
C (outS y) (conid ¢ (outS w))) —
{y + A} (p: Idxy) - Cyp

3.7 Cumulativity

3.7.1 Basics

Since version 2.6.1, Agda supports optional cumulativity of universes under the ——cumulativity flag.

{—# OPTIONS —-cumulativity #-}

When the ——cumulativity flagis enabled, Agda uses the subtyping rule Set i =< Set jwheneveri =< 7j.
For example, in addition to its usual type Set, Nat also has the type Set; and even Set i foranyi : Level.

: Set
= Nat

: Set:
= Nat

: V {i} — Set i
= Nat

With cumulativity is enabled, one can implement lifting to a higher universe as the identity function.

lift : V {a b} — Set a — Set (a U b)
lift x = x

3.7.2 Example usage: N-ary functions

In Agda without cumulativity, it is tricky to define a universe-polymorphic N-ary function typeA — 2 — ... —
A — B because the universe level depends on whether the number of arguments is zero:

module Without-Cumulativity where

N-ary-level : Level — Level — Nat — Level
N-ary-level [, [, zero = /[,
N-ary-level [; [, (suc n) = [; U N-ary-level [; [, n

N-ary : V {[1 [} n — Set [, — Set [, — Set (N-ary-level [; [; n)
N-ary zero A B =3B
N-ary (suc n) A B = A — N-ary n A B

In contrast, in Agda with cumulativity one can always work with the highest possible universe level. This makes it
much easier to define the type of N-ary functions.

module With-Cumulativity where

N-ary : Nat — Set [1 — Set [2 — Set ([1 L [2)
N-ary zero A B =B

(continues on next page)

50 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

N-ary (suc n) A B =A — N-ary n A B

curry™ : (Vec A n — B) — N-ary n A B

curry” {n = zero} f = f []

curry” {n = suc n} £ = A x — curry” A xs — f (x @ xs)
$": N-ary n A B — (Vec A n — B)

£ 8™ [] = f

f $" (x = xs) = f x $" xs

vV* : V {A : Set [1} n — N-ary n A (Set [,) — Set ([1 U [3)
V" zero P=P
V" (sucn) P=V x - V" n (P x)

3.7.3 Limitations

Currently cumulativity only enables subtyping between universes, but not between any other types containing uni-
verses. For example, List Set isnotasubtypeof List Set;. Agda also does not have cumulativity for any other
types containing universe levels, so List {lzero} Nat isnotasubtype of List {lsuc lzero} Nat. Such
rules might be added in a future version of Agda.

3.7.4 Constraint solving

When working in Agda with cumulativity, universe level metavariables are often underconstrained. For example, the
expression List Nat couldmeanList {lzero} Nat,butalsoList {lsuc lzero} Nat,orindeed List
{i} Nat foranyi : Level.

Currently Agda uses the following heuristic to instantiate universe level metavariables. At the end of each type signa-
ture, each mutual block, or declaration that is not part of a mutual block, Agda instantiates all universe level metavari-

ables that are unbounded from above. A metavariable _1 : Level is unbounded from above if all unsolved
constraints that mention the metavariable are of the form a, =< _1 : Level, and _1 does not occur in the type
of any other unsolved metavariables. For each metavariable that satisfies these conditions, it is instantiated to a; U
a, U ... U a,wherea; =< _1 : Level,...,a, =< _1 : Level are all constraints that mention _/.

The heuristic as described above is considered experimental and is subject to change in future versions of Agda.

3.8 Data Types

3.8.1 Simple datatypes

Example datatypes

In the introduction we already showed the definition of the data type of natural numbers (in unary notation):

data Nat : Set where
zero : Nat
suc : Nat — Nat

We give a few more examples. First the data type of truth values:

3.8. Data Types 51

Agda User Manual, Release 2.6.1

data Bool : Set where
true : Bool
false : Bool

The True set represents the trivially true proposition:

data True : Set where
tt : True

The False set has no constructor and hence no elements. It represents the trivially false proposition:

data False : Set where

Another example is the data type of non-empty binary trees with natural numbers in the leaves:

data BinTree : Set where
leaf : Nat — BinTree
branch : BinTree — BinTree — BinTree

Finally, the data type of Brouwer ordinals:

data Ord : Set where
zeroOrd : Ord
sucOrd : Ord — Ord
1imOrd . (Nat — Ord) — Ord

General form

The general form of the definition of a simple datatype D is the following

data D : Set; where

c1 o Ap

Cn : Ap
The name D of the data type and the names cy, ..., c, of the constructors must be new w.r.t. the current signature and
context, and the types A1, ..., A, must be function types ending in D, i.e. they must be of the form
(y1 : B1) =& ... = (ym : Bm) — D

3.8.2 Parametrized datatypes

Datatypes can have parameters. They are declared after the name of the datatype but before the colon, for example:

data List (A : Set) : Set where
[1] : List A
A — List A — List A

52 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

3.8.3 Indexed datatypes

In addition to parameters, datatypes can also have indices. In contrast to parameters which are required to be the same
for all constructors, indices can vary from constructor to constructor. They are declared after the colon as function
arguments to Set. For example, fixed-length vectors can be defined by indexing them over their length of type Nat:

data Vector (A : Set) : Nat — Set where
[] : Vector A zero
{n : Nat} — A — Vector A n — Vector A (suc n)

Notice that the parameter A is bound once for all constructors, while the index {n : Nat} must be bound locally
in the constructor _::_

Indexed datatypes can also be used to describe predicates, for example the predicate Even : Nat — Set canbe
defined as follows:

data Even : Nat — Set where
even—-zero . Even zero
even-plus2 : {n : Nat} — Even n — Even (suc (suc n))

General form

The general form of the definition of a (parametrized, indexed) datatype D is the following

data D (x1 : P1) ... (Xg : Pg) : (y1 : Q1) — ... — (y1 : Q) — Set [where
cy : A
Cn : An

where the types A1, ..., A, are function types of the form

(z1 : B1) = ... = (Zm : Bm) — D x1 ... Xk t1 ... ty

3.8.4 Strict positivity

When defining a datatype D, Agda poses an additional requirement on the types of the constructors of D, namely that
D may only occur strictly positively in the types of their arguments.

Concretely, for a datatype with constructors c; : Aj,...,c, : A,, Agdachecks that each A; has the form

(y1 ¢ Bi) - ... — (ym ¢ Bm) — D

where an argument types B; of the constructors is either
e non-inductive (a side condition) and does not mention D at all,

e or inductive and has the form

(zy = C1) — ... — (zg : Cg) — D

where D must not occur in any Cj.

The strict positivity condition rules out declarations such as

3.8. Data Types 53

Agda User Manual, Release 2.6.1

data Bad : Set where
bad : (Bad — Bad) — Bad
- A B C
-— A is in a negative position, B and C are OK

since there is a negative occurrence of Bad in the type of the argument of the constructor. (Note that the corresponding
data type declaration of Bad is allowed in standard functional languages such as Haskell and ML.).

Non strictly-positive declarations are rejected because they admit non-terminating functions.

If the positivity check is disabled, so that a similar declaration of Bad is allowed, it is possible to construct a term of
the empty type, even without recursion.

{—-# OPTIONS —--no-positivity-check #-}

data 1 : Set where

data Bad : Set where
bad : (Bad — 1) — Bad

self-app : Bad — L
self-app (bad f) = £ (bad £f)

absurd : L
absurd = self-app (bad self-app)

For more general information on termination see Termination Checking.

3.9 Flat Modality

The flat/crisp attribute @b/@f1at is an idempotent comonadic modality modeled after Spatial Type Theory and Crisp
Type Theory. It is similar to a necessity modality.

We can define b A as a type forany (@b A : Set 1) via an inductive definition:

data b {@ 1 : Level} (@b A : Set 1) : Set 1 where
con : (@b x : A) — b A

counit : {@ 1 : Level} (@ A : Set 1} — b A — A
counit (con x) = x

When trying to provide a @b arguments only other @b variables will be available, the others will be marked as @ T in
the context. For example the following will not typecheck:

unit : {@b 1 : Level} {@b A : Set 1} — A — b A
unit x = con x

54 Chapter 3. Language Reference

https://arxiv.org/abs/1509.07584/
https://arxiv.org/abs/1801.07664/
https://arxiv.org/abs/1801.07664/

Agda User Manual, Release 2.6.1

3.9.1 Pattern Matching on @b

Agda allows matching on @b arguments by default. When matching on a @b argument the flat status gets propagated
to the arguments of the constructor

data _W_ (A B : Set) : Set where
inl : A - A W B
inr : B -+ A W B

flat—-sum : {@b A B : Set} — (@b x : AWB) — b AWDHLB
flat-sum (inl x) = inl (con x)
flat-sum (inr x) = inr (con Xx)

When refining @b variables the equality also needs to be provided as @b

flat-subst : {@) A : Set} (P : A — Set} (@b xy : A) (@b eq : x=y) - P x = Py
flat-subst x .x refl p = p

if we simply had (eq : x = y) the code would be rejected.

Pattern matching on @b arguments can be disabled entirely by using the ——no-flat-split flag

{—# OPTIONS —--no-flat—-split #-}

Subtyping of flat function spaces

Normally, if £ : (b x : A) — Bthenwehave A\ x — f x : (x : A) — Bbutnot £ : (x
A) — B. When the option ——subtyping is enabled, Agda will make use of the subtyping rule (@b x
A) — B <: (x : A) — B,so thereisno need for eta-expanding the function f.

3.10 Foreign Function Interface

* Compiler Pragmas
* Haskell FFI
— The FOREIGN pragma

— The COMPILE pragma

Using Haskell Types from Agda

Using Haskell functions from Agda

Using Agda functions from Haskell

Polymorphic functions

Level-polymorphic types

* JavaScript FFI

Handling typeclass constraints

3.10. Foreign Function Interface 55

Agda User Manual, Release 2.6.1

3.10.1 Compiler Pragmas

There are two backend-generic pragmas used for the FFI:

{—-# COMPILE <Backend> <Name> <Text> #-}
{—# FOREIGN <Backend> <Text> #-}

The COMPILE pragma associates some information <Text> with a name <Name> defined in the same module, and
the FOREIGN pragma associates <Text> with the current top-level module. This information is interpreted by the
specific backend during compilation (see below). These pragmas were added in Agda 2.5.3.

3.10.2 Haskell FFI

Note: This section applies to the GHC Backend.

The FOREIGN pragma

The GHC backend interprets FOREIGN pragmas as inline Haskell code and can contain arbitrary code (including
import statements) that will be added to the compiled module. For instance:

{—# FOREIGN GHC import Data.Maybe #-}

{—# FOREIGN GHC
data Foo = Foo | Bar Foo

countBars :: Foo —> Integer
countBars Foo = 0
countBars (Bar f) = 1 + countBars f

#-}

The COMPILE pragma

There are four forms of COMP ILE annotations recognized by the GHC backend

{—# COMPILE GHC <Name> = <HaskellCode> #-}

{—# COMPILE GHC <Name> = type <HaskellType> #-}

{-# COMPILE GHC <Name> data <HaskellData> (<HsConl> | .. | <HsConN>) #-}
{—# COMPILE GHC <Name> as <HaskellName> #-}

The first three tells the compiler how to compile a given Agda definition and the last exposes an Agda definition under
a particular Haskell name allowing Agda libraries to be used from Haskell.

56 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

Using Haskell Types from Agda

In order to use a Haskell function from Agda its type must be mapped to an Agda type. This mapping can be configured
using the t ype and data forms of the COMP ILE pragma.

Opaque types

Opaque Haskell types are exposed to Agda by postulating an Agda type and associating it to the Haskell type using
the t ype form of the COMPILE pragma:

{—# FOREIGN GHC import qualified System.IO #-}

postulate FileHandle : Set
{—-# COMPILE GHC FileHandle = type System.IO.Handle #-}

This tells the compiler that the Agda type FileHandle corresponds to the Haskell type System.IO.Handle and
will enable functions using file handles to be used from Agda.

Data types

Non-opaque Haskell data types can be mapped to Agda datatypes using the data form of the COMPILED pragma:

data Maybe (A : Set) : Set where
nothing : Maybe A
just : A — Maybe A

{—# COMPILE GHC Maybe = data Maybe (Nothing | Just) #-}

The compiler checks that the types of the Agda constructors match the types of the corresponding Haskell constructors
and that no constructors have been left out (on either side).

Built-in Types

The GHC backend compiles certain Agda built-in types to special Haskell types. The mapping between Agda built-in
types and Haskell types is as follows:

Agda Built-in | Haskell Type

NAT Integer
INTEGER Integer

STRING Data.Text.Text
CHAR Char

BOOL Bool

FLOAT Double

Warning: Haskell code manipulating Agda natural numbers as integers must take care to avoid negative values.

Warning: Agda FLOAT values have only one logical NaN value. At runtime, there might be multiple different
NaN representations present. All such NaN values must be treated equal by FFI calls.

3.10. Foreign Function Interface 57

Agda User Manual, Release 2.6.1

Using Haskell functions from Agda

Once a suitable mapping between Haskell types and Agda types has been set up, Haskell functions whose types map
to Agda types can be exposed to Agda code with a COMPILE pragma:

open import Agda.Builtin.IO
open import Agda.Builtin.String
open import Agda.Builtin.Unit

{—# FOREIGN GHC
import qualified Data.Text.IO as Text
import qualified System.IO as IO

#-}
postulate

stdout : FileHandle

hPutStrLn : FileHandle — String — IO T
{-# COMPILE GHC stdout = JO.stdout #-}

{—# COMPILE GHC hPutStrLn = Text.hPutStrLn #-}

The compiler checks that the type of the given Haskell code matches the type of the Agda function. Note that the
COMPILE pragma only affects the runtime behaviour—at type-checking time the functions are treated as postulates.

Warning: It is possible to give Haskell definitions to defined (non-postulate) Agda functions. In this case the
Agda definition will be used at type-checking time and the Haskell definition at runtime. However, there are
no checks to ensure that the Agda code and the Haskell code behave the same and discrepancies may lead to
undefined behaviour.

This feature can be used to let you reason about code involving calls to Haskell functions under the assumption
that you have a correct Agda model of the behaviour of the Haskell code.

Using Agda functions from Haskell

Since Agda 2.3.4 Agda functions can be exposed to Haskell code using the as form of the COMP ILE pragma:

module IdAgda where

idAgda : V {A : Set} — A — A
idAgda x = x

{-# COMPILE GHC idAgda as idAgdaFromHs #-}

This tells the compiler that the Agda function idAgda should be compiled to a Haskell function called
idAgdaFromHs. Without this pragma, functions are compiled to Haskell functions with unpredictable names and,
as a result, cannot be invoked from Haskell. The type of idAgdaFromHs will be the translated type of 1idAgda.

The compiled and exported function idAgdaFromHs can then be imported and invoked from Haskell like this:

—-— file UseIdAgda.hs
module UseIdAgda where

import MAlonzo.Code.IdAgda (idAgdaFromHs)
-— idAgdaFromHs :: () —-> a —-> a

(continues on next page)

58 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

idAgdaApplied :: a => a
idAgdaApplied = idAgdaFromHs ()

Polymorphic functions

Agda is a monomorphic language, so polymorphic functions are modeled as functions taking types as arguments.
These arguments will be present in the compiled code as well, so when calling polymorphic Haskell functions they
have to be discarded explicitly. For instance,

postulate
ioReturn : {A : Set} — A — IO A

{—-# COMPILE GHC ioReturn = \ _ x —> return x #-}

In this case compiled calls to 1oReturn will still have A as an argument, so the compiled definition ignores its first
argument and then calls the polymorphic Haskell ret urn function.

Level-polymorphic types

Level-polymorphic types face a similar problem to polymorphic functions. Since Haskell does not have universe levels
the Agda type will have more arguments than the corresponding Haskell type. This can be solved by defining a Haskell
type synonym with the appropriate number of phantom arguments. For instance:

data Either {a b} (A : Set a) (B : Set b) : Set (a U b) where
left : A — Either A B
right : B — Either A B

{—# FOREIGN GHC type AgdaEither a b = Either #-}
{—# COMPILE GHC Either = data AgdaEither (Left | Right) #-}

Handling typeclass constraints

There is (currently) no way to map a Haskell type with type class constraints to an Agda type. This means that
functions with class constraints cannot be used from Agda. However, this can be worked around by wrapping class
constraints in Haskell data types, and providing Haskell functions using explicit dictionary passing.

For instance, suppose we have a simple GUI library in Haskell:

module GUILib where
class Widget w
setVisible :: Widget w => w —-> Bool -> IO ()

data Window
instance Widget Window
newWindow :: IO Window

To use this library from Agda we first define a Haskell type for widget dictionaries and map this to an Agda type
Widget:

{—# FOREIGN GHC import GUILib #-}
{—# FOREIGN GHC data WidgetDict w = Widget w => WidgetDict #-}

(continues on next page)

3.10. Foreign Function Interface 59

Agda User Manual, Release 2.6.1

(continued from previous page)

postulate
Widget : Set — Set
{—# COMPILE GHC Widget = type WidgetDict #-}

We can then expose setVisible as an Agda function taking a Widget instance argument:

postulate
setVisible : {w : Set} {{_ : Widget w}} — w — Bool — IO T
{—# COMPILE GHC setVisible = \ _ WidgetDict -> setVisible #-)}

Note that the Agda Widget argument corresponds to a WidgetDict argument on the Haskell side. When we match
on the WidgetDict constructor in the Haskell code, the packed up dictionary will become available for the call to
setVisible.

The window type and functions are mapped as expected and we also add an Agda instance packing up the Widget
Window Haskell instance into a WidgetDict:

postulate

Window : Set

newWindow : IO Window

instance WidgetWindow : Widget Window
{—# COMPILE GHC Window = type Window #-}
{—# COMPILE GHC newWindow = newWindow #-}

{—# COMPILE GHC WidgetWindow = WidgetDict #-}

We can then write code like this:

openWindow : IO Window

openWindow = newWindow >>= A\ w —
setVisible w true >>= A\ —
return w

3.10.3 JavaScript FFI

The JavaScript backend recognizes COMP I LE pragmas of the following form:

{—# COMPILE JS <Name> = <JsCode> #-}

where <Name> is a postulate, constructor, or data type. The code for a data type is used to compile pattern matching
and should be a function taking a value of the data type and a table of functions (corresponding to case branches)
indexed by the constructor names. For instance, this is the compiled code for the List type, compiling lists to
JavaScript arrays:

data List {a} (A : Set a) : Set a where
[1] : List A
o (x ¢ A) (xs : List A) — List A
{-# COMPILE JS List = function(x,v) {
if (x.length < 1) |
return v["[]"]();
} else {
return v["_ = "] (x[0], x.slice(1l));

}
}o#-)

(continues on next page)

60 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

{—# COMPILE JS [] = Array() #-}
{—-# COMPILE JS _:_ = function (x) { return function(y) { return Array(x).concat(y); };.
%} #*}

3.11 Function Definitions

3.11.1 Introduction

A function is defined by first declaring its type followed by a number of equations called clauses. Each clause consists
of the function being defined applied to a number of patterns, followed by = and a term called the right-hand side. For
example:

not : Bool — Bool
not true = false
not false = true

Functions are allowed to call themselves recursively, for example:

twice : Nat — Nat
twice zero = zero
twice (suc n) = suc (suc (twice n))

3.11.2 General form

The general form for defining a function is

f @ (x1 ¢+ Ay) & ... = (Xn : Ap) — B
fpi ... pn = d
fag ... gn =e

where f is a new identifier, p; and g; are patterns of type 2;, and d and e are expressions.

The declaration above gives the identifier f the type (x; : 2;) — ... — (x, : A,) — Band fis
defined by the defining equations. Patterns are matched from top to bottom, i.e., the first pattern that matches the
actual parameters is the one that is used.

By default, Agda checks the following properties of a function definition:
* The patterns in the left-hand side of each clause should consist only of constructors and variables.
* No variable should occur more than once on the left-hand side of a single clause.
» The patterns of all clauses should together cover all possible inputs of the function.

* The function should be terminating on all possible inputs, see Termination Checking.

3.11. Function Definitions 61

Agda User Manual, Release 2.6.1

3.11.3 Special patterns

In addition to constructors consisting of constructors and variables, Agda supports two special kinds of patterns: dot
patterns and absurd patterns.

Dot patterns

A dot pattern (also called inaccessible pattern) can be used when the only type-correct value of the argument is
determined by the patterns given for the other arguments. The syntax for a dot pattern is . t.

As an example, consider the datatype Square defined as follows

data Square : Nat — Set where
sg : (m : Nat) — Square (m * m)

Suppose we want to define a function root : (n : Nat) — Square n — Nat that takes as its argu-
ments a number n and a proof that it is a square, and returns the square root of that number. We can do so as follows:

root : (n : Nat) — Square n — Nat
root .(m * m) (sgm) =m
Notice that by matching on the argument of type Square n with the constructor sq : (m : Nat) —

Square (m % m),nisforcedtobeequaltom * m.

In general, when matching on an argument of type D i; ... i, with a constructor ¢ : (x; : A;) —

— (X ¢ Ap) — D J1 ... Jn, Agda will attempt to unify i; ... i, with j; ... J,.
When the unification algorithm instantiates a variable x with value t, the corresponding argument of the function
can be replaced by a dot pattern . t. Using a dot pattern is optional, but can help readability. The following are also
legal definitions of root:

Since Agda 2.4.2.4:
root; : (n : Nat) — Square n — Nat
root; _ (sgm) =m

Since Agda 2.5.2:

root, : (n : Nat) — Square n — Nat
root, n (sgm) =m

In the case of root,, n evaluates tom = m in the body of the function and is thus equivalent to

roots : (n : Nat) — Square n — Nat
roots _ (sgm) =letn=m+minmn

Absurd patterns

Absurd patterns can be used when none of the constructors for a particular argument would be valid. The syntax for
an absurd pattern is ().

As an example, if we have a datatype Even defined as follows

data Even : Nat — Set where
even—-zero . Even zero
even-plus2 : {n : Nat} — Even n — Even (suc (suc n))

62 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

then we can define a function one-not-even : Even 1 — 1 by using an absurd pattern:

one-not—-even : Even 1 — L
one-not-even ()

Note that if the left-hand side of a clause contains an absurd pattern, its right-hand side must be omitted.

In general, when matching on an argument of type D i; ... 1, with an absurd pattern, Agda will attempt for
each constructor ¢ : (x3 ¢ A1) = ... —= (xpm @ Ayp) — D J; ... 3J, of the datatype D to
unify i; ... i, withj; ... 3. The absurd pattern will only be accepted if all of these unifications end in a
conflict.

As-patterns

As-patterns (or @-patterns) can be used to name a pattern. The name has the same scope as normal pattern
variables (i.e. the right-hand side, where clause, and dot patterns). The name reduces to the value of the named
pattern. For example:

module _ {A : Set} (_<_ : A - A — Bool) where
merge : List A — List A — List A
merge xs [] = xs
merge [] ys = ys

merge xs@(x @ xs1) ys@(y @ ysi1) =
if x < y then x I merge xs; ys
else y @ merge xs ysi

As-patterns are properly supported since Agda 2.5.2.

3.11.4 Case trees

Internally, Agda represents function definitions as case trees. For example, a function definition

max : Nat — Nat — Nat

max zero n = n
max m zero =m
max (suc m) (suc n) = suc (max m n)

will be represented internally as a case tree that looks like this:

max m n = case m of
zZero — n
suc m' — case n of
zero — suc m'

suc n' — suc (max m' n')

Note that because Agda uses this representation of the function max, the clause max m zero = m does not hold
definitionally (i.e. as a reduction rule). If you would try to prove that this equation holds, you would not be able to
write ref1:

data _= {A : Set} (x : A) : A — Set where
refl : x = x

Does not work!
lemma : (m : Nat) — max m zero
lemma = refl

1l
3

3.11. Function Definitions 63

Agda User Manual, Release 2.6.1

Clauses which do not hold definitionally are usually (but not always) the result of writing clauses by hand instead of
using Agda’s case split tactic. These clauses are highlighted by Emacs.

The ——exact-split flag causes Agda to raise an error whenever a clause in a definition by pattern matching cannot
be made to hold definitionally. Specific clauses can be excluded from this check by means of the {-# CATCHALL
#-} pragma.

For instance, the above definition of max will be rejected when using the ——exact-split flag because its second
clause does not to hold definitionally.

When using the ——exact-split flag, catch-all clauses have to be marked as such, for instance:

eq : Nat — Nat — Bool

eq zero zZero = true
eq (suc m) (suc n) = egmn
{-# CATCHALL #-}

eq _ _ = false

The ——no-exact-split flag can be used to override a global ——exact-split in a file, by adding a pragma
{—# OPTIONS —--no-exact-split #-}. This option is enabled by default.

3.12 Function Types

Function types are written (x : A) — B, orinthe case of non-dependent functions simply A — B. For instance,
the type of the addition function for natural numbers is:

’Nat — Nat — Nat

and the type of the addition function for vectors is:

’(A:Set)—>(n:Nat)—>(u:VecAn)ﬁ(v:VecAn)—>VecAn

where Set is the type of sets and Vec A n is the type of vectors with n elements of type A. Arrows between
consecutive hypotheses of the form (x : 2A) may also be omitted, and (x : A) (y : A) may be shortened
to(x vy : A):

’(A:Set) (n : Nat) (u v : Vec A n) — Vec A n

Functions are constructed by lambda abstractions, which can be either typed or untyped. For instance, both expressions
below have type (A : Set) — A — A (the second expression checks against other types as well):

A : Set)(x : A) — x

example; = \ (
\ A x — x

example;

You can also use the Unicode symbol A (type “\lambda” in the Emacs Agda mode) instead of \ \.

The application of a function £ : (x : A) — Btoanargumenta : A is written £ a and the type of this
iIsB[x := al.

64 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

3.12.1 Notational conventions

Function types:

prop: ((x : A) (y : B) — C) is-the-same-as ((x : A) - (y : B) = C)
propz : ((xy : A) — C) is-the—-same-as ((x = A)(y « A) — C)
props : (forall (x : A) — C) is-the-same-as ((x : A) — C)

props : (forall x — C) is-the—-same-as ((x +) — C)

pProps (forall x y — C) is-the-same-as (forall x — forall y — C)

You can also use the Unicode symbol V (type “\all” in the Emacs Agda mode) instead of forall.

Functional abstraction:

’ (\x vy — e) is-the-same-as \x — (\y — e)) ‘

Functional application:

’(f a b) is-the—-same-as ((f a) b) ‘

3.13 Generalization of Declared Variables

* Overview

* Nested generalization

* Placement of generalized bindings
* Instance and irrelevant variables

* Importing and exporting variables

e [nteraction

3.13.1 Overview

Since version 2.6.0, Agda supports implicit generalization over variables in types. Variables to be generalized over
must be declared with their types in a variable block. For example:

variable
[: Level
n m : Nat

data Vec (A : Set [) : Nat — Set [where
[] : Vec A O
: A — Vec An — Vec A (suc n)

Here the parameter [and the n in the type of _::__ are not bound explicitly, but since they are declared as generalizable
variables, bindings for them are inserted automatically. The level [is added as a parameter to the datatype and n is
added as an argument to _::_. The resulting declaration is

data Vec {[: Level} (A : Set [) : Nat — Set [where
[] : Vec A O
{n : Nat} - A — Vec A n — Vec A (suc n)

3.13. Generalization of Declared Variables 65

Agda User Manual, Release 2.6.1

See Placement of generalized bindings below for more details on where bindings are inserted.

Variables are generalized in top-level type signatures, module telescopes, and record and datatype parameter tele-
scopes.

Issues related to this feature are marked with generalize in the issue tracker.

3.13.2 Nested generalization

When generalizing a variable, any generalizable variables in its type are also generalized over. For instance, you can
declare A to be a type at some level [as

variable
A : Set [

Now if A is mentioned in a type, the level [will also be generalized over:

—— id : {A.[: Level} {A : Set [} —- A — A
id : A — A
id x = x

The nesting can be arbitrarily deep, so

variable
X : A
refl” : x = x
refl” = refl
expands to
refl” : {x.A.[: Level} {x.A : Set x.A.[} {x : x.A}] — X = x

See Naming of nested variables below for how the names are chosen.

Nested variables are not necessarily generalized over. In this example, if the universe level of A is fixed there is nothing
to generalize:

postulate
-— pure : {A : Set} {(F : Set — Set} - A — F A
pure : {F : Set — Set} - A — F A

See Generalization over unsolved metavariables for more details.

Note: Nested generalized variables are local to each variable, so if you declare

variable
B : Set [

then A and B can still be generalized at different levels. For instance,

-— _$: {(A.[: Level} {A : Set A.[} {B.[: Level} (B : Set B.[} - (A — B) — A — B

$: (A —-B) - A — B
f $x=1fx

66 Chapter 3. Language Reference

https://github.com/agda/agda/labels/generalize

Agda User Manual, Release 2.6.1

Generalization over unsolved metavariables

Generalization over nested variables is implemented by creating a metavariable for each nested variable and generalize
over any such meta that is still unsolved after type checking. This is what makes the pure example from the previous
section work: the metavariable created for [is solved to level 0 and is thus not generalized over.

A typical case where this happens is when you have dependencies between different nested variables. For instance:

postulate
Con : Set

variable

I' A ©® : Ccon

postulate
Sub : Con — Con — Set

idS : sub I' I
o : Sub I A - sub A ©® — sub I' ©

variable
§ o~ : Sub ' A

postulate
assoc : 0 0o (0 o) = (§ o0g) o

In the type of assoc each substitution gets two nested variable metas for their contexts, but the type of _o_ requires
the contexts of its arguments to match up, so some of these metavariables are solved. The resulting type is

assoc : {6.' §.A : Con} {6 : Sub 6.' §.A} {6.A : Con} {o : Sub §.A o.A}
{y.A : Con} {v : Sub 0.A v.A} = (6 o (0 o)) = ((d o g) o)

where we can see from the names that o . I" was unified with § . A and . T with o . A. In general, when unifying two
metavariables the “youngest” one is eliminated which is why § . A and o . A are the ones that remain in the type.

If a metavariable for a nested generalizable variable is partially solved, the left-over metas are generalized over. For
instance,

variable
xs ¢ Vec A n

head : Vec A (suc n) — A

head (x =@ _) = x
—— lemma : {n : Nat} {xs : Vec Nat (suc n)} — head xs = 1 — (0 < sum xs) = true
lemma : head xs = 1 — (0 < sum Xs) = true

In the type of lemma a metavariable is created for the length of xs, which the application head xs refines to suc
n, for some new metavariable n. Since there are no further constraints on n, it’s generalized over, creating the type
given in the comment.

Note: Only metavariables originating from nested variables are generalized over. An exception to this is in
variable blocks where all unsolved metas are turned into nested variables. This means writing

variable
A : Set

3.13. Generalization of Declared Variables 67

Agda User Manual, Release 2.6.1

isequivalentto A : Set [up to naming of the nested variable (see below).

Naming of nested variables

The general naming scheme for nested generalized variables is parentVar.nestedVar. So, in the case of the
identity function id : A — A expanding to

id : {A.[: Level} {A : Set [} — A — A

the name of the level variable is A . [since the name of the nested variable is [and its parent is the named variable A.
For multiple levels of nesting the parent can be another nested variable as in the ref1 “ case above

’refl’ : {x.A.[: Level} {x.A : Set x.A.[} {x : Xx.A}] - X = x

If a variable comes from a free unsolved metavariable in a variable block (see this note), its name is chosen as
follows:

e Ifitis alabelled argument to a function, the label is used as the name,
* otherwise the name is its left-to-right index (starting at 1) in the list of unnamed variables in the type.

It is then given a hierarchical name based on the named variable whose type it occurs in. For example,

postulate
V : (A : Set) — Nat — Set
P : VA n — Set

variable
v : V _

postulate
thm : P v

Here there are two unnamed variables in the type of v, namely the two arguments to V. The first argument has the label
A in the definition of V, so this variable gets the name v . A. The second argument has no label and thus gets the name
v . 2 since it is the second unnamed variable in the type of v.

If the variable comes from a partially instantiated nested variable the name of the metavariable is used unqualified.

Note: Currently it is not allowed to use hierarchical names when giving parameters to functions, see Issue #3208.

3.13.3 Placement of generalized bindings

The following rules are used to place generalized variables:
* Generalized variables are placed at the front of the type signature or telescope.

* Variables mentioned eariler are placed before variables mentioned later, where nested variables count as being
mentioned together with their parent.

Note: This means that an implicitly quantified variable cannot depend on an explicitly quantified one. See Issue
#3352 for the feature request to lift this restriction.

68 Chapter 3. Language Reference

https://github.com/agda/agda/issues/3280
https://github.com/agda/agda/issues/3352
https://github.com/agda/agda/issues/3352

Agda User Manual, Release 2.6.1

Indexed datatypes

When generalizing datatype parameters and indicies a variable is turned into an index if it is only mentioned in indices
and into a parameter otherwise. For instance,

data All (P : A — Set) : Vec A n — Set where
[1] : A1l P []
P x —- All P xs — All P (X = XS)

Here A is generalized as a parameter and n as an index. That is, the resulting signature is

data A1l {A : Set} (P : A — Set) : {n : Nat} — Vec A n — Set where

3.13.4 Instance and irrelevant variables

Generalized variables are introduced as implicit arguments by default, but this can be changed to instance arguments
or irrelevant arguments by annotating the declaration of the variable:

record Eq (A : Set) : Set where
field eg : A - A — Bool

variable
{{EgA}} : Eqgq A —-— generalized as an instance argument
.ignore : A —-— generalized as an irrelevant (implicit) argument

Variables are never generalized as explicit arguments.

3.13.5 Importing and exporting variables
Generalizable variables are treated in the same way as other declared symbols (functions, datatypes, etc) and use the

same mechanisms for importing and exporting between modules. This means that unless marked private they are
exported from a module.

3.13.6 Interaction

When developing types interactively, generalizable variables can be used in holes if they have already been generalized,
but it is not possible to introduce new generalizations interactively. For instance,

works : (A — B) — Vec A n — Vec B {!/n!}
fails : (A — B) — Vec A {!n!} — Vec B {!n!}

In works you can give n in the hole, since a binding for n has been introduced by its occurrence in the argument
vector. In fails on the other hand, there is no reference to n so neither hole can be filled interactively.

3.13. Generalization of Declared Variables 69

Agda User Manual, Release 2.6.1

3.14 Implicit Arguments

It is possible to omit terms that the type checker can figure out for itself, replacing them by _. If the type checker
cannot infer the value of an _ it will report an error. For instance, for the polymorphic identity function

id : (A : Set) - A — A

the first argument can be inferred from the type of the second argument, so we might write id _ zero for the
application of the identity function to zero.

We can even write this function application without the first argument. In that case we declare an implicit function
space:

id : {A : Set} — A — A

and then we can use the notation id zero.

Another example:

== : {A : Set} - A - A — Set

subst : {A : Set} (C : A — Set) {(xy : A} - x=y - Cx = Cy

Note how the first argument to _==__is left implicit. Similarly, we may leave out the implicit arguments A, x, and
y in an application of subst. To give an implicit argument explicitly, enclose it in curly braces. The following two
expressions are equivalent:

x1 subst C eqg cx
x2 = subst {_} C {_} {_} eq cx

It is worth noting that implicit arguments are also inserted at the end of an application, if it is required by the type. For
example, in the following, y1 and y2 are equivalent.

vyl : a==Db —+Ca—Chb
yl = subst C
y2 : a=Db —+Ca— Chb

y2 = subst C {_} {_}

Implicit arguments are inserted eagerly in left-hand sides so y3 and y4 are equivalent. An exception is when no type
signature is given, in which case no implicit argument insertion takes place. Thus in the definition of y5 the only
implicit is the A argument of subst.

y3 : {xy : A} - x=y - Cx — Cy
y3 = subst C

vd ¢ {xy : A} - x=y - Cx — Cy
v4 {x} {y} = subst C {_} {_}

y5 = subst C

It is also possible to write lambda abstractions with implicit arguments. For example, given id : (A : Set) —
A — A, we can define the identity function with implicit type argument as

id’ = A {A} — id A

Implicit arguments can also be referred to by name, so if we want to give the expression e explicitly for y without
giving a value for x we can write

70 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

subst C {y = e} eg cx

In rare circumstances it can be useful to separate the name used to give an argument by name from the name of the
bound variable, for instance if the desired name shadows an existing name. To do this you write

id, : {A =X : Set} - X —- X —— name of bound variable is X
id;, x = x

use—-id, : (Y : Set) — Y — Y

use—-id, Y = id, {A = Y} —— but the label is A

Labeled bindings must appear by themselves when typed, so the type Set needs to be repeated in this example:

const : {A =X : Set} {(B=Y : Set} - A - B — A
const x y = X

When constructing implicit function spaces the implicit argument can be omitted, so both expressions below are valid
expressions of type {A : Set} — A — A:

z1
z2

A {A} x = x
A X — X

The V (or forall) syntax for function types also has implicit variants:

® : (Y {x : A} = B) is—-the-same-as ({x : A} — B)
@ : (V {x} — B) is-the-same-as ({x : _} — B)
® : (V {x y} — B) is-the-same-as (V {x} — V {y} — B)

In very special situations it makes sense to declare unnamed hidden arguments {A} — B.Inthe following example,
the hidden argument to scons of type zero < zero can be solved by n-expansion, since this type reduces to T.

data | : Set where

< : Nat — Nat — Set
zero < _ =T
suc m < zero = L

sucm < sucn=m<n

data SList (bound : Nat) : Set where

[: SList bound

scons : (head : Nat) — {head < bound} — (tail : SList head) — SList bound
example : SList zero
example = scons zero []

There are no restrictions on when a function space can be implicit. Internally, explicit and implicit function spaces are
treated in the same way. This means that there are no guarantees that implicit arguments will be solved. When there
are unsolved implicit arguments the type checker will give an error message indicating which application contains
the unsolved arguments. The reason for this liberal approach to implicit arguments is that limiting the use of implicit
argument to the cases where we guarantee that they are solved rules out many useful cases in practice.

3.14. Implicit Arguments 4

Agda User Manual, Release 2.6.1

3.14.1 Tactic arguments

You can declare factics to be used to solve a particular implicit argument using the @ (tactic t) attribute, where t
Term — TC T. For instance:

clever—-search : Term — TC T
clever-search hole = unify hole (lit (nat 17))

the-best—-number : {@(tactic clever-search) n : Nat} — Nat
the-best—number {n} = n

check : the-best—-number = 17
check = refl

The tactic can be an arbitrary term of the right type and may depend on previous arguments to the function:

default : {A : Set} - A — Term — TC T
default x hole = bindTC (quoteTC x) (unify hole)

search : (depth : Nat) — Term — TC T

example : {@(tactic default 10) depth : Nat}
{@(tactic search depth) proof : Proof} —
Goal

3.14.2 Metavariables

3.14.3 Unification

3.15 Instance Arguments

* Usage

Defining type classes

Declaring instances

Restricting instance search

— Examples

e [nstance resolution

Instance arguments are a special kind of implicit arguments that get solved by a special instance resolution algo-
rithm, rather than by the unification algorithm used for normal implicit arguments. Instance arguments are the Agda
equivalent of Haskell type class constraints and can be used for many of the same purposes.

An instance argument will be resolved if its type is a named type (i.e. a data type or record type) or a variable type
(i.e. a previously bound variable of type Set [), and a unique instance of the required type can be built from declared
instances and the current context.

72 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

3.15.1 Usage

Instance arguments are enclosed in double curly braces {{ }}, e.g. {{x : T}}. Alternatively they can be
enclosed, with proper spacing, e.g. PDF TODO x : T PDF TODO, in the unicode braces PDF TODO
PDF TODO (U+2983 and U+2984, which can be typed as \ { { and \ } } in the Emacs mode).

For instance, given a function _==__

== : {A : Set} {{egA : Eq A}} - A — A — Bool

for some suitable type Eq, you might define

elem : {A : Set} {{egA : Eq A}} — A — List A — Bool

elem x (y @ xs) = x ==y || elem x xs
elem x [] = false
Here the instance argument to _==__is solved by the corresponding argument to elem. Just like ordinary implicit

arguments, instance arguments can be given explicitly. The above definition is equivalent to

elem : {A : Set} {{egqA : Eq A}} — A — List A — Bool
elem {{eqgA}} x (y = xs) = _==_ {{egA}} x vy || elem {{egA}} x xs
elem x [] = false

A very useful function that exploits this is the function it which lets you apply instance resolution to solve an arbitrary
goal:

it : V {a} {A : Set a} — {{A}} — A
it {{x}} = x

As the last example shows, the name of the instance argument can be omitted in the type signature:

== : {A : Set} — {{Egq A}} - A — A — Bool

Defining type classes

The type of an instance argument should have the form {I'} — C vs, where C is a postulated name, a bound
variable, or the name of a data or record type, and {I'} denotes an arbitrary number of implicit or instance arguments
(see Dependent instances below for an example where {I'} is non-empty).

Instances with explicit arguments are also accepted but will not be considered as instances because the value of the
explicit arguments cannot be derived automatically. Having such an instance has no effect and thus raises a warning.

Instance arguments whose types end in any other type are currently also accepted but cannot be resolved by instance
search, so they must be given by hand. For this reason it is not recommended to use such instance arguments. Doing
so will also raise a warning.

Other than that there are no requirements on the type of an instance argument. In particular, there is no special
declaration to say that a type is a “type class”. Instead, Haskell-style type classes are usually defined as record types.
For instance,

record Monoid {a} (A : Set a) : Set a where
field
mempty : A
<> : A —- A — A

In order to make the fields of the record available as functions taking instance arguments you can use the special
module application

3.15. Instance Arguments 73

Agda User Manual, Release 2.6.1

open Monoid {{...}} public

This will bring into scope

mempty : V {a} {A : Set a} — {{Monoid A}} — A
<> :V {a} {A : Set a} — {{Monoid A}} - A — A — A

Superclass dependencies can be implemented using Instance fields.

See Module application and Record modules for details about how the module application is desugared. If defined by
hand, mempty would be

mempty : V {a} {A : Set a} — {{Monoid A}} — A
mempty {{mon}} = Monoid.mempty mon

Although record types are a natural fit for Haskell-style type classes, you can use instance arguments with data types
to good effect. See the Examples below.

Declaring instances

As seen above, instance arguments in the context are available when solving instance arguments, but you also need
to be able to define top-level instances for concrete types. This is done using the instance keyword, which starts
a block in which each definition is marked as an instance available for instance resolution. For example, an instance
Monoid (List A) can be defined as

instance
ListMonoid : V {a} {A : Set a} — Monoid (List A)
ListMonoid = record { mempty = []; _<>_ = _++_ }

Or equivalently, using copatterns:

instance
ListMonoid : V {a} {A : Set a} — Monoid (List A)
mempty {{ListMonoid}} = []

<> {{ListMonoid}} xs ys = xs ++ ys

Top-level instances must target a named type (Monoid in this case), and cannot be declared for types in the context.

You can define local instances in let-expressions in the same way as a top-level instance. For example:

mconcat : V {a} {A : Set a} — {{Monoid A}} — List A — A
mconcat [] = mempty
mconcat (x @ xs) = x <> mconcat xs

sum : List Nat — Nat
sum xs =
let instance
NatMonoid : Monoid Nat
NatMonoid = record { mempty = 0; _<>_ = _+_ }
in mconcat xs

Instances can have instance arguments themselves, which will be filled in recursively during instance resolution. For
instance,

record Egq {a} (A : Set a) : Set a where
field

(continues on next page)

74 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

A — A — Bool

open Eq {{...}} public

instance
eqList : V {a} {A : Set a} — {{Eq A}} — Eqgq (List A)
== {{eqlist}} [I [] = true
== {{eqlList}} (x = xs) (y = ys) = x == y && XS == Vs
== {{eqlist}} _ _ = false
egNat : Eg Nat
== {{egNat}} = natEquals

ex : Bool

ex = (1L =2 =3 = []) == (1 =2 = []) —— false

Note the two calls to _==__in the right-hand side of the second clause. The first uses the Eq A instance and the second

uses a recursive call to egList. In the example ex, instance resolution, needing a value of type Eq (List Nat),
will try to use the egList instance and find that it needs an instance argument of type Eq Nat, it will then solve
that with egNat and return the solution eqList {{egNat}}.

Note: At the moment there is no termination check on instances, so it is possible to construct non-sensical in-
stances like loop : V {a} {A : Set a} — {{Eg A}} — Eg A.To prevent looping in cases like this,
the search depth of instance search is limited, and once the maximum depth is reached, a type error will be thrown.
You can set the maximum depth using the ——instance—-search-depth flag.

Restricting instance search

To restrict an instance to the current module, you can mark it as private. For instance,

record Default (A : Set) : Set where
field default : A

open Default {{...}} public
module M where
private
instance
defaultNat : Default Nat

defaultNat .default = 6

test; : Nat
test: = default

_ test; = 6
_ = refl

open M
instance

defaultNat : Default Nat
defaultNat .default = 42

(continues on next page)

3.15. Instance Arguments 75

Agda User Manual, Release 2.6.1

(continued from previous page)

test, : Nat
test, = default

_ test, = 42
_ = refl

Constructor instances

Although instance arguments are most commonly used for record types, mimicking Haskell-style type classes, they
can also be used with data types. In this case you often want the constructors to be instances, which is achieved by
declaring them inside an instance block. Constructors can only be declared as instances if all their arguments are
implicit or instance arguments. See Instance resolution below for the details.

A simple example of a constructor that can be made an instance is the reflexivity constructor of the equality type:

data = {a} {A : Set a} (x : A) : A — Set a where
instance refl : x = x

This allows trivial equality proofs to be inferred by instance resolution, which can make working with functions that
have preconditions less of a burden. As an example, here is how one could use this to define a function that takes a
natural number and gives back a Fin n (the type of naturals smaller than n):

data Fin : Nat — Set where
zero : V {n} — Fin (suc n)
suc : VYV {n} — Fin n — Fin (suc n)

mkFin : V {n} (m : Nat) — {{sucm - n = 0}} — Fin n
mkFin {zero} m {{}}

mkFin {suc n} zero = zero

mkFin {suc n} (suc m) = suc (mkFin m)

five : Fin 6

five = mkFin 5 -- OK

In the first clause of mkFin we use an absurd pattern to discharge the impossible assumption suc m = 0. See the

next section for another example of constructor instances.

Record fields can also be declared instances, with the effect that the corresponding projection function is considered a
top-level instance.

Overlapping instances

By default, Agda does not allow overlapping instances. Two instances are defined to overlap if they could both solve
the instance goal when given appropriate solutions for their recursive (instance) arguments.

For example, in code below, the instances zero and suc overlap for the goal ex;, because either one of them can be
used to solve the goal when given appropriate arguments, hence instance search fails.

infix 4 _€_

data _€_ (A : Set} (x : A) : List A — Set where
instance
zero : V {xs} — x € x @ XS

(continues on next page)

76 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

suc : V {y xs} — {{x € xs}} — x € y i Xs

ex; 1 €1 =2 w3 w4 ¢ []
ex; = it —- overlapping instances

Overlapping instances can be enabled via the ——overlapping-instances flag. Be aware that enabling this flag
might lead to an exponential slowdown in instance resolution and possibly (apparent) looping behaviour.

Examples

Dependent instances

Consider a variant on the Eqg class where the equality function produces a proof in the case the arguments are equal:

record Egq {a} (A : Set a) : Set a where
field
==_ : (xy : A) — Maybe (x = vy)

open Eq {{...}} public

A simple boolean-valued equality function is problematic for types with dependencies, like the >-type

data ¥ {a b} (A : Set a) (B : A — Set b) : Set (a U b) where
(x : A) > Bx — XAB

—_r

since given two pairs x , yand x; , vy, the types of the second components y and y; can be completely different
and not admit an equality test. Only when x and x; are really equal can we hope to compare y and y;. Having the
equality function return a proof means that we are guaranteed that when x and x; compare equal, they really are equal,
and comparing y and y; makes sense.

An Eq instance for X can be defined as follows:

instance
eqX : V {a b} {A : Set a} {B : A — Set b} — {{Eq A}} — {{V {x} — Egq (B x)}} — Eq,
— (X A B)

== {{eg¥}} (x , y) (x1 , y1) with x == x
== {{egX}} (x , y) (x1 , V1) | nothing = nothing
== {{eqX}} (x , y) (.x , vyi) | just refl with y == y;
== {{egqX}} (x , y) (.x , vy1) | just refl | nothing = nothing
== {{eq¥}} (x , y) (.x , .y) | just refl | just refl = Jjust refl
Note that the instance argument for B states that there should be an Eqg instance for B x, for any x : A. The

argument x must be implicit, indicating that it needs to be inferred by unification whenever the B instance is used. See
Instance resolution below for more details.

3.15. Instance Arguments 77

Agda User Manual, Release 2.6.1

3.15.2 Instance resolution

Given a goal that should be solved using instance resolution we proceed in the following four stages:

Verify the goal First we check that the goal type has the right shape to be solved by instance resolution. It should
be of the form {I'} — C wvs, where the target type C is a variable from the context or the name of a data
or record type, and {I'} denotes a telescope of implicit or instance arguments. If this is not the case instance
resolution fails with an error message'.

Find candidates In the second stage we compute a set of candidates. Let-bound variables and top-level definitions in
scope are candidates if they are defined in an instance block. Lambda-bound variables, i.e. variables bound
in lambdas, function types, left-hand sides, or module parameters, are candidates if they are bound as instance
arguments using { { }}. Only candidates of type { A} — C us, where C is the target type computed in the
previous stage and { A} only contains implicit or instance arguments, are considered.

Check the candidates We attempt to use each candidate in turn to build an instance of the goal type {I'} — C vs.
First we extend the current context by {I'}. Then, given a candidate ¢ : {A} — A we generate fresh
metavariables as : {A} for the arguments of c, with ordinary metavariables for implicit arguments, and
instance metavariables, solved by a recursive call to instance resolution, for instance arguments.

Next we unify A[A := as] with C vs and apply instance resolution to the instance metavariables in as.
Both unification and instance resolution have three possible outcomes: yes, no, or maybe. In case we get a no
answer from any of them, the current candidate is discarded, otherwise we return the potential solution A {I'}
— C as.

Compute the result From the previous stage we get a list of potential solutions. If the list is empty we fail with an
error saying that no instance for C vs could be found (no). If there is a single solution we use it to solve the
goal (yes), and if there are multiple solutions we check if they are all equal. If they are, we solve the goal with
one of them (yes), but if they are not, we postpone instance resolution (maybe), hoping that some of the maybes
will turn into nos once we know more about the involved metavariables.

If there are left-over instance problems at the end of type checking, the corresponding metavariables are printed
in the Emacs status buffer together with their types and source location. The candidates that gave rise to potential
solutions can be printed with the show constraints command (C-c C—=).

3.16 Irrelevance

Since version 2.2.8 Agda supports irrelevancy annotations. The general rule is that anything prepended by a dot (.) is
marked irrelevant, which means that it will only be typechecked but never evaluated.

Note: This section is about compile-time irrelevance. See Run-time Irrelevance for the section on run-time irrele-
vance.

! Instance goal verification is buggy at the moment. See issue #1322.

78 Chapter 3. Language Reference

https://github.com/agda/agda/issues/1322

Agda User Manual, Release 2.6.1

3.16.1 Motivating example

One intended use case of irrelevance is data structures with embedded proofs, like sorted lists.

data _<_ : Nat — Nat — Set where

zero< : {n : Nat} — zero < n

suc<suc : {mn : Nat} - m < n — suc m < suc n
postulate

pr 0 <1

pz : 0L 1

module No-Irrelevance where

data SList (bound : Nat) : Set where
[1] : SList bound
scons : (head : Nat)

— (head < bound)
— (tail : SList head)
— SList bound

Usually, when we define datatypes with embedded proofs we are forced to reason about the values of these proofs.
For example, suppose we have two lists 1; and 1, with the same elements but different proofs:

1; : SList
1, = scons 0 p1 []
1, : SList
1, = scons 0 p2 []

Now suppose we want to prove that 1; and 1, are equal:

1.=1, : 11 = 1,
1.=1, = refl

It’s not so easy! Agda gives us an error:

p1 !'= p2 of type 0 < 1

when checking that the expression refl has type 1, = 1,

We can’t show that 1;, = 1, by refl when p; and p; are relevant. Instead, we need to reason about proofs of 0 <
1

postulate

proof-equality : p1 = p2

Now we can prove 1; = 1, by rewriting with this equality:

1.=1, : 11 = 1,
1:=1, rewrite proof-equality = refl

Reasoning about equality of proofs becomes annoying quickly. We would like to avoid this kind of reasoning about
proofs here - in this case we only care that a proof of head < bound exists, i.e. any proof suffices. We can use
irrelevance annotations to tell Agda we don’t care about the values of the proofs:

data SList (bound : Nat) : Set where
[: SList bound
scons : (head : Nat)

(continues on next page)

3.16. Irrelevance 79

Agda User Manual, Release 2.6.1

(continued from previous page)

— . (head < bound) —— note the dot!
— (tail : SList head)
— SList bound

The effect of the irrelevant type in the signature of scons is that scons’s second argument is never inspected after Agda
has ensured that it has the right type. The type-checker ignores irrelevant arguments when checking equality, so two
lists can be equal even if they contain different proofs:

1; : SList 1
1; = scons 0 p1 []

1, : SList 1
1, = scons

o
e}
N

11=1, : 11 = 1,
1,=1, = refl

3.16.2 Irrelevant function types

For starters, consider irrelevant non-dependent function types:

f : .A —+ B

This type implies that £ does not depend computationally on its argument.

What can be done to irrelevant arguments

Example 1. We can prove that two applications of an unknown irrelevant function to two different arguments are
equal.

—— an unknown function that does not use its second argument
postulate
f : {AB : Set} > A -> .B -> A

—— the second argument 1is irrelevant for equality
proofIrr : {A : Set}{x vy z : A} > f xy =f x z
proofIrr = refl

Example 2. We can use irrelevant arguments as arguments to other irrelevant functions.

id : {A B : Set} -> (.A -> B) -> A -> B
id g x = g x

Example 3. We can match on an irrelevant argument of an empty type with an absurd pattern ().

data 1 : Set where

zero-not-one : .(0 = 1) — L
zero—not—-one ()

80 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

What can’t be done to irrelevant arguments

Example 1. You can’t use an irrelevant value in a non-irrelevant context.

bad-plus : Nat — .Nat — Nat
bad-plus n m = m + n

Variable m is declared irrelevant, so it cannot be used here
when checking that the expression m has type Nat

Example 2. You can’t declare the function’s return type as irrelevant.

bad : Nat — .Nat
bad n = 1

Invalid dotted expression
when checking that the expression .Nat has type Set _47

Example 3. You can’t pattern match on an irrelevant value.

badMatching : Nat — .Nat — Nat
badMatching n zero =n
badMatching n (suc m) = n

Cannot pattern match against irrelevant argument of type Nat
when checking that the pattern zero has type Nat

Example 4. We also can’t match on an irrelevant record (see Record Types).

record ¥ (A : Set) (B : A — Set) : Set where
constructor _,_
field
fst : A

snd : B fst

irrElim : {A : Set} (B : A — Set} — .(X A B) — _
irrElim (a , b) = ?

Cannot pattern match against irrelevant argument of type X A B
when checking that the pattern a , b has type ¥ A B

If this were allowed, b would have type B a but this type is not even well-formed because a is irrelevant!

3.16.3 Irrelevant declarations

Postulates and functions can be marked as irrelevant by prefixing the name with a dot when the name is declared.
Irrelevant definitions can only be used as arguments of functions of an irrelevant function type .A — B.

Examples:

.irrFunction : Nat — Nat

irrFunction zero = zero
irrFunction (suc n) = suc (suc (irrFunction n))
postulate

.assume—false : (A : Set) — A

3.16. Irrelevance 81

Agda User Manual, Release 2.6.1

An important example is the irrelevance axiom irrAx:

postulate
JirrAx : V {[} {A : Set [} -> A -> A

This axiom is not provable inside Agda, but it is often very useful when working with irrelevance.

3.16.4 Irrelevant record fields

Record fields (see Record Types) can be marked as irrelevant by prefixing their name with a dot in the definition of the
record type. Projections for irrelevant fields are only created if option ——irrelevant-projections is supplied
(since Agda > 2.5.4).

Example 1. A record type containing pairs of numbers satisfying certain properties.

record InterestingNumbers : Set where
field
n : Nat
m : Nat
.propl : n + m n+xm+ 2

.prop2 : suc m < n

Example 2. For any type A, we can define a ‘squashed’ version Squash A where all elements are equal.

record Squash (A : Set) : Set where
constructor squash
field
.proof : A

open Squash

.unsquash : V {A} — Squash A — A
unsquash x = proof x

Example 3. We can define the subset of x : A satisfying P x with irrelevant membership certificates.
record Subset (A : Set) (P : A -> Set) : Set where
constructor _#_
field
elem : A

.certificate : P elem

.certificate : {A : Set}{P : A -> Set} -> (x : Subset A P) => P (Subset.elem x)
certificate (a # p) = irrAx p

3.16.5 Dependent irrelevant function types

Just like non-dependent functions, we can also make dependent functions irrelevant. The basic syntax is as in the
following examples:

.(xy : A) — B
{x vy z : A} — B
.(xs {ys zs} : A) — B
:Vx .y - B
:Vx .{y} {z} .v - B
{{x : A}} — B

Fh th Fh Hh Hh b

82 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

The declaration

f : .(x : A) — B[x]

f x = t[x]

requires that x is irrelevant both in t [x] and in B [x]. This is possible if, for instance, B[x] = C x,withC : .A
— Set.

Dependent irrelevance allows us to define the eliminator for the Squash type:

elim-Squash : {A : Set} (P : Squash A — Set)
(ih ¢ .(a : A) — P (squash a)) —
(a~ : Squash A) — P a
elim-Squash P ih (squash a) = ih a
Note that this would not type-check with (ih : (a : A) — P (squash a)).

3.16.6 Irrelevant instance arguments

Contrary to normal instance arguments, irrelevant instance arguments (see Instance Arguments) are not required to
have a unique solution.

record T : Set where
instance constructor tt

NonZero : Nat — Set
NonZero zero = 1
NonZero (suc _) = T

pred” : (n : Nat) .{{_ : NonZero n}} — Nat
pred” zero {{}}
pred’” (suc n) = n

find-nonzero : (n : Nat) {{x y : NonZero n}} — Nat
find-nonzero n = pred’ n

3.16.7 Subtyping of irrelevant function spaces

Normally,if £ : .(x : A) — Bthenwehave A\ x — f x : (x : A) — Bbutnotf : (x :
A) — B. When the option —-subtyping is enabled, Agda will make use of the subtyping rule . (x : A) —
B <: (x : A) — B, so there is no need for eta-expanding the function f.

3.17 Lambda Abstraction

3.17.1 Pattern matching lambda

Anonymous pattern matching functions can be defined using one of the two following syntaxes:

\ { pl1l .. pln => el ; ... ; pml .. pmn —> em }
\ where
pll .. pln —> el

(continues on next page)

3.17. Lambda Abstraction 83

Agda User Manual, Release 2.6.1

(continued from previous page)

pml .. pmn —> em

(where, as usual, \ and —> can be replaced by A and —). Note that the where keyword introduces an indented block
of clauses; if there is only one clause then it may be used inline.

Internally this is translated into a function definition of the following form:

extlam pll .. pln = el

extlam pml .. pmn = em

where extlam is a fresh name. This means that anonymous pattern matching functions are generative. For instance,
ref 1 will not be accepted as an inhabitant of the type

(AN { true — true ; false — false }) ==
(A { true — true ; false — false })

because this is equivalent to ext laml = extlam?2 for some distinct fresh names ext laml and extlam2. Cur-
rently the where and with constructions are not allowed in (the top-level clauses of) anonymous pattern matching
functions.

Examples:

and : Bool — Bool — Bool
and = A { true x — x ; false _ — false }

xor : Bool — Bool — Bool

A { true true — false
; false false — false

— true

Xor

r — —

}

eq : Bool — Bool — Bool
eq = A where
true true — true
false false — true
_ — false

fst : {A : Set} {B : A — Set} - X A B — A
fst = A { (a, b) = a }

snd : {A : Set} {B : A — Set} (p : ¥ A B) — B (fst p)
snd = A { (a, b) = b}

swap : {A B : Set} - X A (A _ — B) — X B (A
swap = A where (a , b) — (b, a)

— A)

84 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

3.18 Local Definitions: let and where

There are two ways of declaring local definitions in Agda:
* let-expressions

¢ where-blocks

3.18.1 let-expressions

A let-expression defines an abbreviation. In other words, the expression that we define in a let-expression can neither
be recursive, nor can let bound functions be defined by pattern matching.

Example:
£ : Nat
f = let h : Nat — Nat

h m = suc (suc m)
in h zero + h (suc zero)

let-expressions have the general form

let £f1 : A7 — ... — Aip — Ay
f1 X1 .. Xp = €1
fm Al < ... — Amk — Am
fm X1 ... X = €m

in e’

where previous definitions are in scope in later definitions. The type signatures can be left out if Agda can infer
them. After type-checking, the meaning of this is simply the substitution e’ [f; := A x; ... x, — €;

;i fm o= A x1 ... xp — epnl. Since Agda substitutes away let-bindings, they do not show up in
terms Agda prints, nor in the goal display in interactive mode.

Let binding record patterns

For a record

record R : Set where
constructor c

field
f : X
g : Y
h : 2

a let expression of the form

let (¢ x vy z) =+t
in u

will be translated internally to as

let x = £ t
y =gt
z = h t
in u

3.18. Local Definitions: let and where 85

Agda User Manual, Release 2.6.1

This is not allowed if R is declared coinductive.

3.18.2 where-blocks

where-blocks are much more powerful than let-expressions, as they support arbitrary local definitions. A where can
be attached to any function clause.

where-blocks have the general form

clause
where
decls

or

clause
module M where
decls

A simple instance is

g ps = e
where
f : A —- ... — A, — A
f pi1 ... Pin= €1
f Pmi1 <+« Pmn= ©m

Here, the p;; are patterns of the corresponding types and e; is an expression that can contain occurrences of f.
Functions defined with a where-expression must follow the rules for general definitions by pattern matching.

Example:

reverse : {A : Set} — List A — List A
reverse {A} xs = rev—append xs []
where
rev-append : List A — List A — List A
rev—append [] ys = ys
rev-append (x I xXs) ys = rev-append xs (x @ ys)

Variable scope

The pattern variables of the parent clause of the where-block are in scope; in the previous example, these are A and
xs. The variables bound by the type signature of the parent clause are not in scope. This is why we added the hidden
binder {A}.

86 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

Scope of the local declarations

The where-definitions are not visible outside of the clause that owns these definitions (the parent clause). If the
where-block is given a name (form module M where), then the definitions are available as qualified by M, since
module M is visible even outside of the parent clause. The special form of an anonymous module (module _
where) makes the definitions visible outside of the parent clause without qualification.

If the parent function of a named where-block (form module M where) is private, then module M is also
private. However, the declarations inside M are not private unless declared so explicitly. Thus, the following
example scope checks fine:

module Parent; where
private
parent = local
module Private where
local = Set
module Public = Private

test: = Parent;.Public.local

Likewise, a private declaration for a parent function does not affect the privacy of local functions defined under a
module where-block:

module Parent, where
private
parent = local
module _ where
local = Set

test, = Parent,.local

They can be declared private explicitly, though:

module Parent; where

parent = local
module _ where
private

local = Set

Now, Parent;.local is not in scope.

A private declaration for the parent of an ordinary where-block has no effect on the local definitions, of course.
They are not even in scope.

3.18.3 Proving properties

Sometimes one needs to refer to local definitions in proofs about the parent function. In this case, the module
where variant is preferable.

reverse : {A : Set} — List A — List A
reverse {A} xs = rev-append xs []
module Rev where
rev-append : List A — List A — List A
rev-append [] ys = ys
rev-—append (x :: Xs) ys = rev-append xs (x :: ys)

This gives us access to the local function as

3.18. Local Definitions: let and where 87

Agda User Manual, Release 2.6.1

Rev.rev-append : {A : Set} (xs : List A) — List A — List A — List A

Alternatively, we can define local functions as private to the module we are working in; hence, they will not be visible
in any module that imports this module but it will allow us to prove some properties about them.

private
rev-append : {A : Set} — List A — List A — List A
rev—append [] ys = ys
rev—append (x @ Xs) ys = rev-append xs (x o ys)
reverse' : {A : Set} — List A — List A
reverse' xs = rev-append xs []

3.18.4 More Examples (for Beginners)

Using a let-expression:

tw-map : {A : Set} — List A — List (List A)
tw-map {A} xs = let twice : List A — List A
twice xs = xs ++ xs
in map (\ x — twice [x]) xs

Same definition but with less type information:

tw-map' : {A : Set} — List A — List (List A)
tw-map' {A} xs = let twice _
twice xs = xXs ++ xs
in map (\ x — twice [x]) xs

Same definition but with a where-expression

tw-map'' : {A : Set} — List A — List (List A)
tw-map'' {A} xs = map (\ x — twice [x]) xs
where twice : List A — List A
twice xs = xs ++ xs

Even less type information using let:

g : Nat — List Nat

g zero [zero]

g (suc n) = let sing = [suc n]
in sing ++ g n

Same definition using where:

g' : Nat — List Nat

g' zero = [zero]

g' (suc n) = sing ++ g' n
where sing = [suc n]

More than one definition in a let:

h : Nat — Nat
h n = let add2 : Nat
add2 = suc (suc n)

(continues on next page)

88 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

twice : Nat — Nat
twice m = m * m

in twice add2

More than one definition in a where:

fibfact : Nat — Nat
fibfact n = fib n + fact n
where fib : Nat — Nat

fib zero = suc zero
fib (suc zero) = suc zero
fib (suc (suc n)) = fib (suc n) + fib n

fact : Nat — Nat
fact zero = suc zero
fact (suc n) = suc n x fact n

Combining let and where:

k : Nat — Nat
k n = let aux : Nat — Nat
aux m = pred (h m) + fibfact m
in aux (pred n)
where pred : Nat — Nat
pred zero = zero
pred (suc m) =m

3.19 Lexical Structure

Agda code is written in UTF-8 encoded plain text files with the extension .agda. Most unicode characters can be
used in identifiers and whitespace is important, see Names and Layout below.

3.19.1 Tokens

Keywords and special symbols

Most non-whitespace unicode can be used as part of an Agda name, but there are two kinds of exceptions:
special symbols Characters with special meaning that cannot appear at all in a name. These are . ; {} () @".
keywords Reserved words that cannot appear as a name part, but can appear in a name together with other characters.

= | ->—=: 2 \ AV abstract constructor data do eta-equality field
forall hiding import in inductive infix infixl infixr instance let macro module
mutual no-eta—-equality open overlap pattern postulate primitive private public
quote quoteContext quoteGoal quotelerm record renaming rewrite Set syntax tactic un-
quote unquoteDecl unquoteDef using variable where with

The Set keyword can appear with a number suffix, optionally subscripted (see Universe Levels). For instance
Set42 and Set,, are both keywords.

3.19. Lexical Structure 89

Agda User Manual, Release 2.6.1

Names

A qualified name is a non-empty sequence of names separated by dots (.). A name is an alternating sequence of
name parts and underscores (_), containing at least one name part. A name part is a non-empty sequence of unicode
characters, excluding whitespace, _, and special symbols. A name part cannot be one of the keywords above, and
cannot start with a single quote, ' (which are used for character literals, see Literals below).

Examples
e Valid: data?, ::,if_then_else_,0b,_F_€_,x=y
e Invalid: data_?, foo_ _bar, _,a;b, [_.._]

The underscores in a name indicate where the arguments go when the name is used as an operator. For instance, the
application _+_ 1 2 canbewrittenas 1 + 2. See Mixfix Operators for more information. Since most sequences of
characters are valid names, whitespace is more important than in other languages. In the example above the whitespace
around + is required, since 1+2 is a valid name.

Qualified names are used to refer to entities defined in other modules. For instance Prelude .Bool . t rue refers to
the name t rue defined in the module Prelude.Bool. See Module System for more information.

Literals
There are four types of literal values: integers, floats, characters, and strings. See Built-ins for the corresponding types,
and Literal Overloading for how to support literals for user-defined types.

Integers Integer values in decimal or hexadecimal (prefixed by 0x) notation. Non-negative numbers map by default
to built-in natural numbers, but can be overloaded. Negative numbers have no default interpretation and can
only be used through overloading.

Examples: 123, 0xFOF080, -42, -0xF

Floats Floating point numbers in the standard notation (with square brackets denoting optional parts):

float = [-] decimal . decimal [exponent]
| [-] decimal exponent
exponent = (e | E) [+ | -] decimal

These map to built-in floats and cannot be overloaded.
Examples: 1.0, -5.0e+12,1.01le-16,4.2E9, 50e3.

Characters Character literals are enclosed in single quotes ('). They can be a single (unicode) character, other than
' or \, or an escaped character. Escaped characters start with a backslash \ followed by an escape code. Escape
codes are natural numbers in decimal or hexadecimal (prefixed by x) between 0 and Ox10f£f£ff (1114111),
or one of the following special escape codes:

920 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

Code | ASCII | Code | ASCIl | Code | ASCII | Code | ASCII
a 7 b 8 t 9 n 10
v 11 f 12 \ \ ' '
" " NUL 0 SOH 1 STX 2
ETX 3 EOT 4 ENQ 5 ACK 6
BEL 7 BS 8 HT 9 LF 10
VT 11 FF 12 CR 13 SO 14
SI 15 DLE 16 DC1 17 DC2 18
DC3 19 DC4 20 NAK 21 SYN 22
ETB 23 CAN 24 EM 25 SUB 26
ESC 27 FS 28 GS 29 RS 30
Us 31 SP 32 DEL 127

Character literals map to the built-in character type and cannot be overloaded.
Examples: 'A', 'V', "\x2200"', '\ESC', "\32', "\n"', "\'""', """,

Strings String literals are sequences of, possibly escaped, characters enclosed in double quotes ". They follow the
same rules as character literals except that double quotes " need to be escaped rather than single quotes '.
String literals map to the built-in string type by default, but can be overloaded.

Example: "PDF TODOPDF TODOPDF TODOPDF TODOPDF TODOPDF TODO \
"PDF TODOPDF TODOPDF TODO\"\n".

Holes

Holes are an integral part of the interactive development supported by the Emacs mode. Any text enclosed in { ! and
!'} is a hole and may contain nested holes. A hole with no contents can be written ?. There are a number of Emacs
commands that operate on the contents of a hole. The type checker ignores the contents of a hole and treats it as an
unknown (see Implicit Arguments).

Example: {! £ {!x!} 5 !}

Comments

Single-line comments are written with a double dash —- followed by arbitrary text. Multi-line comments are enclosed
in {— and -} and can be nested. Comments cannot appear in string literals.

Example:

{— Here is a {—- nested -}

comment -}
s : String —--line comment {-
s = "{- not a comment -}"

3.19. Lexical Structure 91

Agda User Manual, Release 2.6.1

Pragmas

Pragmas are special comments enclosed in {—# and #-} that have special meaning to the system. See Pragmas for a
full list of pragmas.

3.19.2 Layout

Agda is layout sensitive using similar rules as Haskell, with the exception that layout is mandatory: you cannot use
explicit {, } and ; to avoid it.

A layout block contains a sequence of statements and is started by one of the layout keywords:

abstract do field instance let macro mutual postulate primitive private where

The first token after the layout keyword decides the indentation of the block. Any token indented more than this is
part of the previous statement, a token at the same level starts a new statement, and a token indented less lies outside
the block.

data Nat : Set where - starts a layout block
—-— comments are not tokens
zero : Nat —-— statement 1
suc : Nat — -— statement 2
Nat -— also statement 2
one : Nat -- outside the layout block
one = sSuc zero

Note that the indentation of the layout keyword does not matter.

An Agda file contains one top-level layout block, with the special rule that the contents of the top-level module need
not be indented.

module Example where
NotIndented : Set:
NotIndented = Set

3.19.3 Literate Agda

Agda supports literate programming with multiple typesetting tools like LaTeX, Markdown and reStructuredText. For
instance, with LaTeX, everything in a file is a comment unless enclosed in \begin{code}, \end{code}. Literate
Agda files have special file extensions, like .lagda and .lagda.tex for LaTeX, .lagda.md for Markdown,
.lagda.rst for reStructuredText instead of .agda. The main use case for literate Agda is to generate LaTeX
documents from Agda code. See Generating HTML and Generating LaTeX for more information.

\documentclass{article}
% some preamble stuff
\begin{document }
Introduction usually goes here
\begin{code}
module MyPaper where
open import Prelude
five : Nat
five = 2 + 3
\end{code}

(continues on next page)

92 Chapter 3. Language Reference

https://en.wikipedia.org/wiki/Literate_programming

Agda User Manual, Release 2.6.1

(continued from previous page)

Now, conclusions!
\end{document }

3.20 Literal Overloading

3.20.1 Natural numbers

By default natural number literals are mapped to the built-in natural number type. This can be changed with the
FROMNAT built-in, which binds to a function accepting a natural number:

{—# BUILTIN FROMNAT fromNat #-}

This causes natural number literals n to be desugared to fromNat n. Note that the desugaring happens before
implicit argument are inserted so fromNat can have any number of implicit or instance arguments. This can be
exploited to support overloaded literals by defining a fype class containing £ romNat:

module number-simple where

record Number {a} (A : Set a) : Set a where
field fromNat : Nat — A

open Number {{...}} public

{—# BUILTIN FROMNAT fromNat #-}

This definition requires that any natural number can be mapped into the given type, so it won’t work for types like
Fin n. This can be solved by refining the Number class with an additional constraint:

record Number {a} (A : Set a) : Set (lsuc a) where
field
Constraint : Nat — Set a
fromNat : (n : Nat) {{_ : Constraint n}} — A
open Number {{...}} public using (fromNat)

{—# BUILTIN FROMNAT fromNat #-}

This is the definition used in Agda .Builtin.FromNat. A Number instance for Nat is simply this:

instance
NumNat : Number Nat
NumNat .Number.Constraint _ = T
NumNat .Number.fromNat m =m

A Number instance for Fin n can be defined as follows:

< (m n : Nat) — Set
zero < n =T

suc m < zero = L

sucm < sucn=m<n

fromN< : Vmn - m < n — Fin (suc n)
fromN< zero = zero

(continues on next page)

3.20. Literal Overloading 93

Agda User Manual, Release 2.6.1

(continued from previous page)

fromN< (suc _) =zero ()
fromN< (suc m) (suc n) p = suc (fromN< m n p)
instance
NumFin : V {n} — Number (Fin (suc n))
NumFin {n} .Number.Constraint m =m < n
NumFin {n} .Number.fromNat m {{m<n}} = fromN< m n m<n

test : Fin 5
test = 3

It is important that the constraint for literals is trivial. Here, 3 < 5 evaluates to T whose inhabitant is found by
unification.

Using predefined function from the standard library and instance NumNat, the NumF in instance can be simply:

open import Data.Fin using (Fin; #_)
open import Data.Nat using (suc; _<7?_)
open import Relation.Nullary.Decidable using (True)

instance
NumFin : V {n} — Number (Fin n)
NumFin {n} .Number.Constraint m = True (suc m <? n)
NumFin {n} .Number.fromNat m {{m<n}} = #_ m {m<n = m<n}

3.20.2 Negative numbers

Negative integer literals have no default mapping and can only be used through the FROMNEG built-in. Binding this to
a function £ romNeg causes negative integer literals —n to be desugared to fromNeg n, where n is a built-in natural
number. From Agda.Builtin.FromNeg:

record Negative {a} (A : Set a) : Set (lsuc a) where
field
Constraint : Nat — Set a
fromNeg : (n : Nat) {{_ : Constraint n}} — A
open Negative {{...}} public using (fromNegq)

{—# BUILTIN FROMNEG fromNeg #-}

3.20.3 Strings

String literals are overloaded with the FROMSTRING built-in, which works just like FROMNAT. If it is not bound
string literals map to built-in strings. From Agda.Builtin.FromString:

record IsString {a} (A : Set a) : Set (lsuc a) where
field
Constraint : String — Set a
fromString : (s : String) {{_ : Constraint s}} — A
open IsString {{...}} public using (fromString)

{—# BUILTIN FROMSTRING fromString #-}

94 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

3.20.4 Restrictions

Currently only integer and string literals can be overloaded.

Overloading does not work in patterns yet.

3.21 Mixfix Operators

A type name, function name, or constructor name can comprise one or more name parts if we separate them with
underscore characters _, and the resulting name can be used as an operator. From left to right, each argument goes in
the place of each underscore _.

For instance, we can join with underscores the name parts 1 £, then, and else into asinglename 1f_then_else_.
The application of the function name 1 f_then_else_ to some arguments named x, v, and z can still be written as:

* astandard application by using the full name 1 f_then_else_ x y z

* an operator application by placing the arguments between the name parts if x then y else z,leavinga
space between arguments and part names

* other sections of the full name, for instance leaving one or two underscores:
— (if_then y else z) x
- (if x then_else z) vy
— if x then y else_ z
— 1if x then_else_ y z
— if_then y else_ x z
— (if_then_else z) x vy

Examples of type names, function names, and constructor names as mixfix operators:

—-— Example type name _=_

= : Bool — Bool — Bool
true = b =D
false = _ = true

—-— Example function name _and_

and : Bool — Bool — Bool
true and x = x
false and _ = false

—-— Example function name 1f_then_else_

if then else_ : {A : Set} — Bool - A — A — A
if true then x else y = x

if false then x else y =y

—-— Example constructor name _:_
data List (A : Set) : Set where
nil : List A
A — List A — List A

3.21. Mixfix Operators 95

Agda User Manual, Release 2.6.1

3.21.1 Precedence

Consider the expression true and false = false. Depending on which of _and_ and _=-_ has more
precedence, it can either be read as (false and true) = false = true,oras false and (true =
false) = true.

Each operator is associated to a precedence, which is a floating point number (can be negative and fractional!). The
default precedence for an operator is 20.

Note: Please note that —> is directly handled in the parser. As a result, the precedence of —> is lower than any
precedence you may declare with infix1 and infixr.

If we give _and_ more precedence than _=>_, then we will get the first result:

infix 30 _and

—— infix 20 _=_ (default)

p-and : {x y z : Bool} - xandy = z = (x and y) = z
p—and = refl
e—and : false and true = false = true

e—and = refl

But, if we declare a new operator _and’ _ and give it less precedence than _=-_, then we will get the second result:

and’ : Bool — Bool — Bool
and’ = _and_

infix 15 _and’_
-— infix 20 _=_ (default)

p—= {x y z : Bool} - x and’ vy = z = x and’ (y = z)
p—= = refl

e—= false and’ true = false = false

e—-= = refl

3.21.2 Associativity

Consider the expression true = false = false. Depending on whether _=_ is associates to the left or to
the right, it can be read as (false = true) = false = false, or false = (true = false) =
true, respectively.

If we declare an operator _=-_ as infixr, it will associate to the right:

infixr 20 _=_

p-right : {x y z : Bool} — x = vy = z
p-right = refl

X = (v = z)

e-right : false = true = false = true
e-right = refl

If we declare an operator _=>’__ as infix]1, it will associate to the left:

96 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

infixl 20 _='_

=' : Bool — Bool — Bool

=' = _=_

p-left : {xy z : Bool} — x ="'y =" 2z = (x =" vy) =" z
p—left = refl

e-left : false =’ true =’ false = false

e-left = refl

3.21.3 Ambiguity and Scope

If you have not yet declared the fixity of an operator, Agda will complain if you try to use ambiguously:

e—ambiguous : Bool
e—ambiguous = true = true = true

Could not parse the application true = true = true
Operators used in the grammar:
= (infix operator, level 20)

Fixity declarations may appear anywhere in a module that other declarations may appear. They then apply to the entire
scope in which they appear (i.e. before and after, but not outside).

3.22 Module System

3.22.1 Module application
3.22.2 Anonymous modules

3.22.3 Basics

First let us introduce some terminology. A definition is a syntactic construction defining an entity such as a function or
a datatype. A name is a string used to identify definitions. The same definition can have many names and at different
points in the program it will have different names. It may also be the case that two definitions have the same name. In
this case there will be an error if the name is used.

The main purpose of the module system is to structure the way names are used in a program. This is done by
organising the program in an hierarchical structure of modules where each module contains a number of definitions
and submodules. For instance,

module Main where

module B where
f : Nat — Nat
f n=sucn

g : Nat — Nat — Nat
gnm=m

3.22. Module System 97

Agda User Manual, Release 2.6.1

Note that we use indentation to indicate which definitions are part of a module. In the example £ is in the module
Main.B and g is in Main. How to refer to a particular definition is determined by where it is located in the module
hierarchy. Definitions from an enclosing module are referred to by their given names as seen in the type of f above.
To access a definition from outside its defining module a qualified name has to be used.

module Main, where

module B where
f : Nat — Nat
f n=sucn

ff : Nat — Nat
ff x = B.f (B.f x)

To be able to use the short names for definitions in a module the module has to be opened.

module Mains; where
module B where
f : Nat — Nat
f n=sucn

open B

ff : Nat — Nat
ff x = £ (f x)

If A. gname refers to a definition d, then after open 2, gname will also refer to d. Note that gname can itself be a
qualified name. Opening a module only introduces new names for a definition, it never removes the old names. The
policy is to allow the introduction of ambiguous names, but give an error if an ambiguous name is used.

Modules can also be opened within a local scope by putting the open B within a where clause:

ff; : Nat — Nat
ff, x = £ (f x) where open B

3.22.4 Private definitions

To make a definition inaccessible outside its defining module it can be declared private. A private definition is
treated as a normal definition inside the module that defines it, but outside the module the definition has no name.
In a dependently type setting there are some problems with private definitions—since the type checker performs
computations, private names might show up in goals and error messages. Consider the following (contrived) example

module Main; where
module A where

private
IsZero’ : Nat — Set
IsZero’ zero =T
IsZero’ (suc n) = L

IsZero : Nat — Set
IsZero n = IsZero’ n

open A

(continues on next page)

98 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

prf : (n : Nat) — IsZero n
prf n =7

The type of the goal ?0 is IsZero n which normalises to IsZero’ n. The question is how to display this normal
form to the user. At the point of 20 there is no name for IsZero’. One option could be try to fold the term and print
IsZero n. This is a very hard problem in general, so rather than trying to do this we make it clear to the user that
IsZero’ is something that is not in scope and print the goal as ; Main,.A.IsZero’ n. The leading semicolon
indicates that the entity is not in scope. The same technique is used for definitions that only have ambiguous names.

In effect using private definitions means that, from the user’s perspective, we do not have subject reduction. This is
just an illusion, however—the type checker has full access to all definitions.

3.22.5 Name modifiers

An alternative to making definitions private is to exert finer control over what names are introduced when opening
a module. This is done by qualifying an open statement with one or more of the modifiers using, hiding, or
renaming. You can combine both using and hiding with renaming, but not with each other. The effect of

open A using (xXs) renaming (ys to zs)

is to introduce the names xs and zs where xs refers to the same definition as A . xs and zs refers to A.ys. We
do not permit xs, ys and zs to overlap. The other forms of opening are defined in terms of this one. An omitted
renaming modifier is equivalent to an empty renaming.

To refer to a module M inside A you write module M. For instance,

open A using (module M)

Since 2.6.1: The fixity of an operator can be set or changed in a renaming directive:

module ExampleRenamingFixity where

module ArithFoo where

postulate
A : Set
& A : A — A — A

infixr 10 _&

open ArithFoo renaming (_&_ to infixl 8 _+_; _”_ to infixl 10 _"_)

Here, we change the fixity of _s&__ while renaming it to _+_, and assign a new fixity to _~_ which has the default
fixity in module ArithFoo.

3.22.6 Re-exporting names

A useful feature is the ability to re-export names from another module. For instance, one may want to create a module
to collect the definitions from several other modules. This is achieved by qualifying the open statement with the public
keyword:

module Example where

module Nat; where

(continues on next page)

3.22. Module System 99

Agda User Manual, Release 2.6.1

(continued from previous page)

data Nat; : Set where
zero : Nat,
suc : Nat: — Nat;

module Bool; where

data Bool; : Set where
true false : Bool;

module Prelude where

open Nat; public
open Bool; public

isZero : Nat; — Bool:
isZero zero = true
isZero (suc _) = false

The module Prelude above exports the names Nat, zero, Bool, etc., in addition to i sZero.

3.22.7 Parameterised modules

So far, the module system features discussed have dealt solely with scope manipulation. We now turn our attention to
some more advanced features.

It is sometimes useful to be able to work temporarily in a given signature. For instance, when defining functions for
sorting lists it is convenient to assume a set of list elements A and an ordering over A. In Coq this can be done in two
ways: using a functor, which is essentially a function between modules, or using a section. A section allows you to
abstract some arguments from several definitions at once. We introduce parameterised modules analogous to sections
in Coq. When declaring a module you can give a telescope of module parameters which are abstracted from all the
definitions in the module. For instance, a simple implementation of a sorting function looks like this:

module Sort (A : Set) (_<_ : A —- A — Bool) where
insert A — List A — List A
insert x [] = x = []
insert x (y = ys) with x < y
insert x (y = ys) | true = x & y @ ys
insert x (y = ys) | false = y = insert x ys

sort : List A — List A
sort [] =[]
sort (x @ xs) = insert x (sort xs)

As mentioned parametrising a module has the effect of abstracting the parameters over the definitions in the module,
so outside the Sort module we have

Sort.insert : (A : Set) (_<_ : A —- A — Bool) —
A — List A — List A
Sort.sort : (A : Set) (. <_ : A —- A — Bool) —

List A — List A

For function definitions, explicit module parameter become explicit arguments to the abstracted function, and implicit
parameters become implicit arguments. For constructors, however, the parameters are always implicit arguments. This
is a consequence of the fact that module parameters are turned into datatype parameters, and the datatype parameters
are implicit arguments to the constructors. It also happens to be the reasonable thing to do.

100 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

Something which you cannot do in Coq is to apply a section to its arguments. We allow this through the module
application statement. In our example:

module SortNat = Sort Nat legNat

This will define a new module SortNat as follows

module SortNat where
insert : Nat — List Nat — List Nat
insert = Sort.insert Nat legNat

sort : List Nat — List Nat
sort = Sort.sort Nat legNat

The new module can also be parameterised, and you can use name modifiers to control what definitions from the
original module are applied and what names they have in the new module. The general form of a module application
is

’module M1 A = M2 terms modifiers

A common pattern is to apply a module to its arguments and then open the resulting module. To simplify this we
introduce the short-hand

’open module M1 A = M2 terms [public] mods

for

module M1 A = M2 terms mods
open Ml [public]

3.22.8 Splitting a program over multiple files

When building large programs it is crucial to be able to split the program over multiple files and to not have to type
check and compile all the files for every change. The module system offers a structured way to do this. We define
a program to be a collection of modules, each module being defined in a separate file. To gain access to a module
defined in a different file you can import the module:

import M

In order to implement this we must be able to find the file in which a module is defined. To do this we require that the
top-level module 2. B. C is defined in the file C . agda in the directory A/B/. One could imagine instead to give a file
name to the import statement, but this would mean cluttering the program with details about the file system which is
not very nice.

When importing a module M, the module and its contents are brought into scope as if the module had been defined in
the current file. In order to get access to the unqualified names of the module contents it has to be opened. Similarly
to module application we introduce the short-hand

open import M

for

import M
open M

3.22. Module System 101

Agda User Manual, Release 2.6.1

Sometimes the name of an imported module clashes with a local module. In this case it is possible to import the
module under a different name.

import M as M’

It is also possible to attach modifiers to import statements, limiting or changing what names are visible from inside the
module. Note that modifiers attached to open import statements apply to the open statement and not the import
statement.

3.22.9 Datatype modules and record modules

When you define a datatype it also defines a module so constructors can now be referred to qualified by their data type.
For instance, given:

module DatatypeModules where

data Nat, : Set where
zero : Nat,
suc : Nat, — Nat,

data Fin : Nat, — Set where
zero : V {n} — Fin (suc n)
suc : V {n} — Fin n — Fin (suc n)

you can refer to the constructors unambiguously as Nat, . zero,Nat,.suc,Fin.zero,and Fin. suc (Nat, and
Fin are modules containing the respective constructors). Example:

inj ¢ (n m : Naty) — Natz.suc n = sucm — n = m
inj .m m refl = refl

Previously you had to write something like

inj; : (nm : Nat,) — _=_ {A = Nat,} (suc n) (sucm — n =m
inj; .m m refl = refl

to make the type checker able to figure out that you wanted the natural number suc in this case.

Also record declarations define a corresponding module, see Record modules.

3.23 Mutual Recursion

Mutual recursive functions can be written by placing the type signatures of all mutually recursive function before their
definitions:

f : A

g : B[f]

f =alf, g]
g =Dblf, gl.

You can mix arbitrary declarations, such as modules and postulates, with mutually recursive definitions. For data types
and records the following syntax is used to separate the declaration from the definition:

102 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

—-— Declaration.
data Vec (A : Set) : Nat — Set ——- Note the absence of ‘where’.

—-— Definition.
data Vec A where -—- Note the absence of a type signature.
[1] : Vec A zero
o {n : Nat} —- A — Vec A n — Vec A (suc n)
—-— Declaration.
record Sigma (A : Set) (B : A — Set) : Set

—-— Definition.
record Sigma A B where
constructor _,_
field fst : A
snd : B fst

The parameter lists in the second part of a data or record declaration behave like variables left-hand sides (although
infix syntax is not supported). That is, they should have no type signatures, but implicit parameters can be omitted or
bound by name.

Such a separation of declaration and definition is for instance needed when defining a set of codes for types and their
interpretation as actual types (a so-called universe):

-— Declarations.
data TypeCode : Set
Interpretation : TypeCode — Set

—-— Definitions.
data TypeCode where
nat : TypeCode
pi : (a : TypeCode) (b : Interpretation a — TypeCode) — TypeCode

Interpretation nat = Nat
Interpretation (pi a b) (x : Interpretation a) — Interpretation (b x)

When making separated declarations/definitions private or abstract you should attach the private keyword to the
declaration and the abstract keyword to the definition. For instance, a private, abstract function can be defined as

private
f : A

abstract
f =e

3.23.1 Old Syntax: Keyword mutual

Note: You are advised to avoid using this old syntax if possible, but the old syntax is still supported.

Mutual recursive functions can be written by placing the type signatures of all mutually recursive function before their
definitions:

mutual
f : A
f = alf, gl

(continues on next page)

3.23. Mutual Recursion 103

Agda User Manual, Release 2.6.1

(continued from previous page)

B[f]

g
g = blf, g]

Using the mutual keyword, the universe example from above is expressed as follows:

mutual
data TypeCode : Set where
nat : TypeCode
pi : (a : TypeCode) (b : Interpretation a — TypeCode) — TypeCode

Interpretation : TypeCode — Set
Interpretation nat = Nat
Interpretation (pi a b) = (x : Interpretation a) — Interpretation (b x)

This alternative syntax desugars into the new syntax.

3.24 Pattern Synonyms

A pattern synonym is a declaration that can be used on the left hand side (when pattern matching) as well as the right
hand side (in expressions). For example:

data Nat : Set where

zero : Nat

suc : Nat — Nat
pattern z = zero
pattern ss x = suc (suc x)
f Nat — Nat
f z =z
f (suc z) = ss z
f (ss n) =n

Pattern synonyms are implemented by substitution on the abstract syntax, so definitions are scope-checked but not
type-checked. They are particularly useful for universe constructions.

3.24.1 Overloading

Pattern synonyms can be overloaded as long as all candidates have the same shape. Two pattern synonym definitions
have the same shape if they are equal up to variable and constructor names. Shapes are checked at resolution time and
after expansion of nested pattern synonyms.

For example:

data List (A : Set) : Set where
1nil : List A
lcons : A — List A — List A

data Vec (A : Set) : Nat — Set where
vnil : Vec A zero
vcons : V {n} — A — Vec A n — Vec A (suc n)

(continues on next page)

104 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

(continued from previous page)

pattern [] = 1lnil
pattern [] = vnil
pattern _:_ x xs = lcons x xs
pattern _:_ y ys = vcons y ys

lmap : V {A B} - (A — B) — List A — List B
lmap £ [] =[]
Imap £ (x = xs) = f x @ lmap f xs

vmap : V {A Bn} - (A - B) — Vec An — Vec B n

vmap £ [] = []
vmap f (x & xs) = f x & vmap f xs
Flipping the arguments in the synonym for vcons, changing itto pattern _:_ ys y = vcons y ys,results

in the following error when trying to use the synonym:

Cannot resolve overloaded pattern synonym since candidates

have different shapes:

—

pattern _:_ x xs = lcons X Xs
at pattern-synonyms.lagda.rst:51,13-16
pattern _:_ ys y = vcons y ys

at pattern-synonyms.lagda.rst:52,13-16
(hint: overloaded pattern synonyms must be equal up to variable and
constructor names)
when checking that the clause lmap f (x = xs) = f x @ lmap f xs has
type {A B : Set} - (A —- B) — List A — List B

3.24.2 Refolding

For each pattern pattern lhs = rhs, Agda declares a DISPLAY pragma refolding rhs to 1hs (see The DIS-
PLAY pragma for more details).

3.25 Positivity Checking

Note: This is a stub.

3.25.1 The NO_POSITIVITY_ CHECK pragma

The pragma switches off the positivity checker for data/record definitions and mutual blocks. This pragma was added
in Agda2.5.1

The pragma must precede a data/record definition or a mutual block. The pragma cannot be used in ——sa e mode.
Examples:

 Skipping a single data definition:

{—# NO_POSITIVITY CHECK #-}
data D : Set where
lam : (D — D) — D

3.25. Positivity Checking 105

Agda User Manual, Release 2.6.1

* Skipping a single record definition:

{—# NO_POSITIVITY CHECK #-}
record U : Set where
field ap : U — U

 Skipping an old-style mutual block. Somewhere within a mutual block before a data/record definition:

mutual
data D : Set where
lam : (D — D) — D

{—# NO_POSITIVITY CHECK #-}
record U : Set where
field ap : U — U

 Skipping an old-style mutual block. Before the mutual keyword:

{—# NO_POSITIVITY CHECK #-}

mutual
data D : Set where
lam : (D — D) — D

record U : Set where
field ap : U — U

 Skipping a new-style mutual block. Anywhere before the declaration or the definition of a data/record in the
block:

record U : Set
data D . Set

record U where
field ap : U — U

{—# NO_POSITIVITY CHECK #-}
data D where
lam : (D — D) — D

3.25.2 POLARITY pragmas

Polarity pragmas can be attached to postulates. The polarities express how the postulate’s arguments are used. The
following polarities are available:

e _: Unused.

* ++: Strictly positive.
e +: Positive.

e —: Negative.

¢ «: Unknown/mixed.

Polarity pragmas have the form {—-# POLARITY name <zero or more polarities> #-}, and can be
given wherever fixity declarations can be given. The listed polarities apply to the given postulate’s arguments (ex-
plicit/implicit/instance), from left to right. Polarities currently cannot be given for module parameters. If the postulate
takes n arguments (excluding module parameters), then the number of polarities given must be between 0 and n (in-
clusive).

106 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

Polarity pragmas make it possible to use postulated type formers in recursive types in the following way:

postulate
|I_ll : Set — Set
{—# POLARITY |_| ++ #-}

data D : Set where
c:||DpJ] —0D

Note that one can use postulates that may seem benign, together with polarity pragmas, to prove that the empty type
is inhabited:

postulate
= : Set — Set — Set
lambda : {A B : Set} - (A - B) — A = B
apply : {A B : Set} - A =B — A = B

{—# POLARITY _ = ++ #-}
data 1 : Set where

data D : Set where
c:D=1 —0D

not—inhabited : D — L
not-inhabited (¢ f) = apply f (c f)
d D
d = ¢ (lambda not—-inhabited)
bad : L

bad = not-inhabited d

Polarity pragmas are not allowed in safe mode.

3.26 Postulates

A postulate is a declaration of an element of some type without an accompanying definition. With postulates we can
introduce elements in a type without actually giving the definition of the element itself.

The general form of a postulate declaration is as follows:

postulate
cll ... cli : <Type>
cnl ... cnj : <Type>
Example:
postulate
A B . Set
a : A
b : B
=AB= : A -> B => Set
a==b : a =AB= b

3.26. Postulates 107

Agda User Manual, Release 2.6.1

Introducing postulates is in general not recommended. Once postulates are introduced the consistency of the whole
development is at risk, because there is nothing that prevents us from introducing an element in the empty set.

data False : Set where

postulate bottom : False

A preferable way to work is to define a module parametrised by the elements we need

module Absurd (bt : False) where

module M (A B : Set) (a : A) (b : B)
(_=AB=_ : A -> B => Set) (a==b : a =AB= b) where

3.26.1 Postulated built-ins

Some Built-ins such as Float and Char are introduced as a postulate and then given a meaning by the corresponding
{—-# BUILTIN ... #-} pragma.

3.27 Pragmas

Pragmas are comments that are not ignored by Agda but have some special meaning. The general format is:

’{*# <PRAGMA_NAME> <arguments> #-}

3.27.1 Index of pragmas

* BUILTIN

e CATCHALL

* COMPILE

e DISPLAY

* FOREIGN

e INJECTIVE

* INLINE

e NO_POSITIVITY_CHECK
e NO_TERMINATION_CHECK
* NO_UNIVERSE_CHECK
* NOINLINE

e NON_COVERING

e NON_TERMINATING

* OPTIONS

108 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

POLARITY
REWRITE
STATIC
TERMINATING

WARNING_ON_USAGE

WARNING_ON_IMPORT

See also Command-line and pragma options.

The DISPLAY pragma

Users can declare a DISPLAY pragma:

{—# DISPLAY f el .. en = e #-}

Thiscauses £ el .. entobe printed in the same way as e, where ei can bind variables used in e. The expressions
ei and e are scope checked, but not type checked.

For example this can be used to print overloaded (instance) functions with the overloaded name:

instance
NumNat : Num Nat
NumNat = record { ..; _+_ = natPlus }

{-# DISPLAY natPlus a b = a + b #-}

Limitations

¢ Left-hand sides are restricted to variables, constructors, defined functions or types, and literals. In particular,
lambdas are not allowed in left-hand sides.

» Since DISPLAY pragmas are not type checked implicit argument insertion may not work properly if the type of
f computes to an implicit function space after pattern matching.

The INJECTIVE pragma

Injective pragmas can be used to mark a definition as injective for the pattern matching unifier. This can be used as a
version of ——injective-type-constructors that only applies to specific datatypes.

Example:

open import Agda.Builtin.Equality
open import Agda.Builtin.Nat

data Fin : Nat — Set where
zero : {n : Nat} — Fin (suc n)
suc : {n : Nat} — Fin n — Fin (suc n)

{—# INJECTIVE Fin #-)}

Fin-injective : {m n : Nat} — Finm = Fin n - m = n
Fin-injective refl = refl

Aside from datatypes, this pragma can also be used to mark other definitions as being injective (for example postu-
lates).

3.27. Pragmas 109

Agda User Manual, Release 2.6.1

The INLINE and NOINLINE pragmas
A definition marked with an INLINE pragma is inlined during compilation. If it is a simple definition that does no
pattern matching, it is also inlined in function bodies at type-checking time.
Definitions are automatically marked INLINE if they satisfy the following criteria:
* No pattern matching.
» Uses each argument at most once.
* Does not use all its arguments.
Automatic inlining can be prevented using the NOINLINE pragma.

Example:

—— Would be auto-inlined since it doesn't use the type arguments.
o: {ABC : Set} - B —+C) - (A~ B) — A — C
(f o g x=1£f (g x)

{—# NOINLINE _o_ #-} —— prevents auto-inlining
—— Would not be auto-inlined since it's using all its arguments
0o : (Set — Set) — (Set — Set) — Set — Set

(F o G) X =F (G X)

{-# INLINE _o_ #-} —-— force inlining

The NON_COVERING pragma

New in version 2.6.1.

The NON_COVERING pragma can be placed before a function (or a block of mutually defined functions) which the
user knows to be partial. To be used as a version of ——allow-incomplete-matches that only applies to specific
functions.

The OPTIONS pragma

Some options can be given at the top of .agda files in the form
{—# OPTIONS —--{opt;} —-—{opto} ... #-}

The possible options are listed in Command-line and pragma options.

The WARNING_ON_ pragmas
A library author can use a WARNING_ON_USAGE pragma to attach to a defined name a warning to be raised whenever
this name is used (since Agda 2.5.4).

Similarly they can use a WARNING_ON_IMPORT pragma to attach to a module a warning to be raised whenever this
module is imported (since Agda 2.6.1).

This would typically be used to declare a name or a module ‘DEPRECATED’ and advise the end-user to port their
code before the feature is dropped.

Users can turn these warnings off by using the ——warn=noUserWarning option. For more information about the
warning machinery, see Warnings.

110 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

Example:

—— The new name for the identity
id : {A : Set} —- A — A
id x = x

—— The deprecated name
Ax—x = id

—— The warning

{—# WARNING_ON_USAGE Ax—x "DEPRECATED: Use 'id' instead of ‘Ax—x'" #-}

{—# WARNING_ON_IMPORT "DEPRECATED: Use module ‘Function.Identity' rather than,
— ‘Identity " #-}

3.28 Prop

Prop is Agda’s built-in sort of definitionally proof-irrelevant propositions. It is similar to the sort Set, but all elements
of a type in Prop are considered to be (definitionally) equal.

The implementation of Prop is based on the POPL 2019 paper Definitional Proof-Irrelevance without K by Gaétan
Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau.

3.28.1 Usage

Just as for Set, we can define new types in Prop’s as data or record types:

data | : Prop where

record T : Prop where
constructor tt

When defining a function from a data type in Prop to a type in Set, pattern matching is restricted to the absurd
pattern () :

absurd : (A : Set) — 1 — A
absurd A ()

Unlike for Set, all elements of a type in Prop are definitionally equal. This implies all applications of absurd are
the same:

only-one-absurdity : {A : Set} — (p g : 1) — absurd A p = absurd A g
only-one-absurdity p g = refl

Since pattern matching on datatypes in Prop is limited, it is recommended to define types in Prop as recursive
functions rather than inductive datatypes. For example, the relation _<_ on natural numbers can be defined as follows:

< : Nat — Nat — Prop
zero < vy =T

suc x < zero = L

suc x < sucy = x <y

The induction principle for _<_ can then be defined by matching on the arguments of type Nat:

3.28. Prop 111

https://hal.inria.fr/hal-01859964/

Agda User Manual, Release 2.6.1

module _ (P : (m n : Nat) — Set)
(pzy ¢ (y : Nat) — P zero y)
(pss @ (xy : Nat) - P x y — P (suc x) (suc y)) where
<-ind : (mn : Nat) 2 m < n — P mn
<-ind zero y pf = pzy y
<-ind (suc x) (suc y) pf = pss x y (<-ind x y pf)
<-ind (suc _) =zero ()

Note that while it is also possible to define _<_ as a datatype in Prop, it is hard to use that version because of the
limitations to matching.

When defining a record type in Set, the types of the fields can be both in Set and Prop. For example:

record Fin (n : Nat) : Set where
constructor _ [_]
field
] : Nat
proof : suc [_] < n
open Fin
Fin-= : V {n} (xy : Finn) = [x]=[v] = x=vy

Fin-= x y refl = refl

3.28.2 The predicative hierarchy of Prop

Just as for Set, Agda has a predicative hierarchy of sorts Propg (= Prop), Prop;, Prop,, ... where Propg
Sety, Prop; : Set,, Prop, : Sets, etc. Like Set, Prop also supports universe polymorphism (see
universe levels), soforeach [/ : Level we have the sort Prop /. For example:

True : V {[} — Prop (lsuc ()
True {[} =V (P : Prop [) —- P — P

3.28.3 The propositional squash type

When defining a datatype in Prop [, it is allowed to have constructors that take arguments in Set [forany [~ <
[. For example, this allows us to define the propositional squash type and its eliminator:

data Squash {/} (A : Set [) : Prop [where
squash : A — Squash A

([} (A : Set [,) (P : Prop [,) — (A — P) — Squash A — P

squash-elim : V {
P f (squash x) = f x

squash-elim A

This type allows us to simulate Agda’s existing irrelevant arguments (see irrelevance) by replacing .A with Squash A.

112 Chapter 3. Language Reference

Agda User Manual, Release 2.6.1

3.28.4 Limitations

It is possible to define an equality type in Prop as follows:

data _=_ {[} {A : Set [} (x : A) : A — Prop [where
refl : x = x

However, the corresponding eliminator cannot be defined because of the limitations on pattern matching. As a conse-
quence, this equality type is only useful for refuting impossible equations:

0£1 : 0 =1 — 1
0#1 ()

3.29 Record Types

* Example: the Pair type constructor

* Declaring, constructing and decomposing records

Declaring record types

Constructing record values

Decomposing record values

Record update
* Record modules
» Eta-expansion

* Recursive records

* Instance fields

Records are types for grouping values together. They generalise the dependent product type by providing named fields
and (optional) further components.

3.29.1 Example: the Pair type constructor

Record types can be declared using the record keyword

record Pair (A B : Set) : Set where
field
fst : A
snd : B
T